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Von Neumann algebras associated with the normal representation of canonical commutation re-
lations are studied. Corresponding to each subspace of a real Hilbert space (test function space), a
von Neumann algebra on another complex Hilbert space (the Fock space) is defined. This corre-
spondence is proved to be an isomorphism between a certain complemented lattice of subspaces and
that of the von Neumann algebras. This result has an application to the duality theorem in the theory
of a free scalar field, which is to be discussed in a separate paper.

A necessary and sufficient condition on a subspace, in order that the corresponding von Neumann

algebra is of type I, is obtained.

1. INTRODUCTION

OME attention has recently been focused on

the lattice of von Neumann algebras of local
observables in quantum field theory.' In this
context, a number of questions concerning the
properties of “algebras of local observables” have
arisen. The most important conjecture is the
“duality theorem.” Another interesting problem
concerns the type of the algebras. In order to study
these questions for the case of a free scalar field,
we present, in this paper, a systematic investigation
of von Neumann algebras associated with the
normal representation of the canonical commutation
relations (CCR’s). The duality theorem for the
free scalar field will be treated in a separate paper
as an application of the present analysis.

The normal representation (or the Fock rep-
resentation”) of CCR’s can be treated at least in
three different ways and each approach has its
own advantage. In Sec. 2, we introduce two ap-

* Supported by the National Science Foundation.

T On_leave from Department of Nuclear Engineering,
Kyoto University, Kyoto, Japan.

! R. Haag, Proceedings of the Midwest Conference on Theo-
retical Physics, Minneapolis, 1961; R. Haag and B. Schroer,
J. Math. Phys. 3, 248 (1962).

*V. Fock, Z. Physik 75, 622 (1932).

proaches, one using Weyl’s formulation® and the
other using Segal’s formulation.* In Weyl’s formula-
tion, the object under consideration is specified by
a real Hilbert space K (the common test function
space for both conjugate fields ¢ and =), while
in Segal’s formulation it is specified by a real
Hilbert space H and an antisymmetric unitary
operator 8 on H. (H is the direct sum of test function
spaces of ¢ and = and B is used for the purpose
of remembering the different roles of test function
spaces of ¢ and 7.) As will be seen more explicitly
in a separate publication, Weyl’s formulation is
convenient for the deseription of the field at one
sharp time, whereas Segal’s formulation is better
suited for the description of the field over all
space-time.

The von Neumann algebras® associated with the
normal representation of CCR’s are introduced in
See. 3. In Weyl’s formulation, the von Neumann
algebra R:(K,, K./K) is determined by two sub-
spaces K, and K, of K, and only the relative
relation (up to unitary equivalence) of K,, K,, and

3 . Weyl, Z. Physik 46, 1 (1927).

¢ I. E. Segal, in lecture notes of Boulder Seminar on Ap-

plied Mathematics, Boulder, Colorado, 1960 (unpublished).
& J. von Neumann, Math. Ann. 102, 370 (1929).
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K is important for the intrinsic properties of the
von Neumann algebra. In Segal’'s formulation,
the von Neumann algebra Rs(H,/H) is determined
by a subspace H, of H, and only the relative relation
(up to unitary equivalence) of H,, H, and B8 is
important for the intrinsic properties of the von
Neumann algebra.

Later in Sec. 3, we introduce the structure of a
complemented lattice for the set of pairs of sub-
spaces K,;, K, in K or for the set of subspaces H,
in H and also for the set of von Neumann algebras.
Here the complementations are, respectively,
(K,, K,) — (K3, KY), H, — BH7 for subspaces,
and B — R’ (the commutant of R) for von Neumann
algebras. The main theorem then asserts that the
correspondence introduced earlier between sub-
spaces and von Neumann algebras is an isomorphism
of these complemented lattices. This theorem and
its proof are given in Sec. 3 except for the most
difficult part concerning the isomorphism of comple-
mentation (the duality theorem), which will be
proved in Secs. 8 and 9. Sections 4-7 are to a large
extent preparation for this proof of the duality
theorem.

In Sec. 4, the relative relations up to unitary
equivalence of H,, H, and 3, as well as that of K, K,,
and K, are characterized in terms of unitary in-
variants and this is accomplished by casting H, and
8 or K, and K, into a standard form. As a by-
product, the von Neumann algebras defined in
Weyl’s formulation and Segal’s formulation are
seen to be equivalent.

The analysis of See. 4 allows us to decompose
each von Neumann algebra into a tensor product
of von Neumann algebras of very simple structure
and a remainder, which has some convenient
property. This will be done in Sec. 5.

In Seec. 6, we introduce another approach to the
normal representation of CCR’s, namely the tensorial
construction, in which the particle picture plays
an important role. We then define generalized
creation and annihilation operators, which are,
roughly speaking, homogeneous polynomials of
ordinary creation and annihilation operators. Their
multiplication formula is derived and will be used
in Sec. 8. Any bounded operator can be expanded
into a series of generalized creation and annihilation
operators of increasing degrees, where the con-
vergence of the series is assured for each matrix
element between vectors in a dense set (a con-
vergence weaker than the weak convergence). This
expansion is a very important tool for the proof
in Secs. 8 and 9.
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In Seec. 7, the connection of the tensorial construc-
tion with the other two formulations of Sec. 2
is clarified.

In Sec. 8, we begin the proof of the duality theorem,
The essential point in the proof is the observation
that the duality theorem corresponds to a set of
uncoupled conditions, each of which refers only
to terms of the same degree in the generalized
creation and annihilation operators. In Sec. 8, we
treat terms of the same degree in this expansion
and the subtlety of the convergence question of
the expansion is dealt with by using Garding’s
device in Sec. 9, where the proof of the duality
theorem is completed.

In Sec. 10, we derive a necessary and sufficient
condition for the von Neumann algebra to be of
type I in terms of the unitary invariants for H,
and 8 or K, and K, considered in Sec. 4. It is re-
marked that the von Neumann algebras in question
are, in some cases, unitarily equivalent to an
example of von Neumann.®

2. NORMAL REPRESENTATION OF CCR’s

A representation of CCR’s over a real inner
product space K, in Weyl’s form,® is the structure
consisting of a complex Hilbert space $ and a set
of unitary operators U(f) and V{g) on § for every
fand g in K such that U(Af) and V(\g) are weakly
(and hence strongly) continuous in A and

Ufo V(g U(f2) V(g2)
= Ul + f)V(g + gz\)e”f"”". 2.1

Here (f;, g.) is the real inner product of f, and
g, in K.

If the algebra generated by U(f) and V{g) has
a cyclic vector ¥, the expectation functional

E(f, 9) = (¥, UNV(9)¥) 22

determines the cyclic representation of CCR’s up to
unitary equivalence.” The normal representation of
CCR’s is the cyclic representation of CCR’s de-
termined® by the functional

¢ J. von Neumann, Ann. Math. 41, 94 (1940)

7 If E(f, g) satisfies a certain condition, then existence is
also guaranteed. See H. Araki, J. Math. Phys. 1, 492 (1960).

8 The existence of the representation of CCR’s with the
functional (2.3) can be established rather easily either by
proving the positive semidefiniteness condition of reference 7
for the functional (2.3), as has been done in H. Araki, Ph.D.
Thesis, Princeton University (1960), or by using the infinite
direct product of J. von Neumann,® as has been done by
H. Araki and J. S. Woods.10

? J. von Neumann, Compos. Math. 6, 1 (1938).

10 H. Araki and J. S. Woods, J. Math. Phys. 4, 637 (1963).
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E:(f, 9
=exp[-3f, N -G 9 — 2o 9l 23

where the space K can be taken to be a real Hilbert
space.'’ The Hilbert space 9, the cyclic vector ¥,
and the operators U(f) and V(g) in the normal
representation will be denoted by $(K), ¥x(K),
Ux(f), and Vz(g). The self-adjoint field operators
¢#(f) and 75 (g) are defined through Stone’s theorem'*
by

Ue(Mf) = exp dor(f), Vr(\g) = exp idae(g). (2.4)

¢#(f) and wr(g) depend linearly on f and ¢ and
satisfy CCR’s.

Another structure closely related to the above
has been introduced by Segal.® Let H be a real
Hilbert space and 8 be an operator on H satisfying

g* = -8, B =-1 (2.5)

Then we consider the structure consisting of a
complex Hilbert space $s(H), a vector ¥4(H) in
Os(H), and a set of unitary operators W(h) for
every h € H such that

W)W (hs) = W(hi + ho) exp [G)(hs, 8, B2)],  (2.6)
Ws(H), Wh¥s(H)) = exp [0, B)],  @2.7)

and such that ¥4(H) is a cyclic vector of the algebra
generated by W(k), A € H.

Such a structure can be related to the Weyl form
explicitly as follows. The property (2.5) for 8
implies' the existence of a (nonunique) subspace
K of H such that' K | BK and H = K® K.
Now take D:(H) = H-(K), Vs(H) = ¥(K) and

Wk) = Us(NVe(g) exp [GO(F, 9],  (2.8)

where h = f + Bg, f, ¢ € K. Equations (2.6) and
(2.7) follow immediately from (2.1) and (2.2). The
eyclicity is also evident, due to the equations

1 Cf. Lemma 2.3 of H. Araki and J. S. Woods, J. Math,
Phys. 4, 637 (1963).

12 M. H. Stone, Ann, Math. 33, 643 (1932).

15 Consider the complexifieation H -+ ¢H of H and extend
linearly the operator 8 to an operator 8 on H + {H. 8 is
unitary and has eigenvalues 7. Let H, be the eigenspace
belonging to +4. Let {%;} be an orthonormal basis of H, and
let by = f; + tg;, £, g;i € H. Since h — i8h € H, for any
k&€ H, f; and g; together span the real Hilbert space H. Since
Bhi = thy, g; = —@f;, and since (h;, hy) = 85, (g5, f1) = 0
and (fi, f7) = 1/28;5 Let the subspace of H spanned by f;
be K. Then 8K is spanned by ¢;and K | 8K, H = K @ 8K.
An alternative way is to use the relation of K and L in Sec. 7.

4 In the following, the notation A ¢ B = C always means
that A and B are subspaces, A | B, and that C is the direct
sum of 4 and B. If A is not necessarily orthogonal to B, then
A 4 Bis used to denote theset {z + y;z € A,y € B]. The
subspace spanned by 4 and B is then denoted by 4 + B.
If4 | BythendA + B=4A @B = A + B.
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Uef) = W), Velg) = WBp).  (2.9)

The above structure consisting of $s(H), ¥s(H),
and W), h € H, is obviously unique up to a
unitary equivalence. However, the subspace K is
not uniquely characterized by the operator 8, and
hence the correspondence between the Weyl and
the Segal structures is not unique. In fact, if $5(H),
¥s(H), and W(h) are given, then different possibili-
ties for Uz(f) and V#(g) corresponding to different
choices of K are related to each other by the linear
canonical transformations

‘Pi"(f) = ‘PF(CHD + Wf(wa), (2-10)
W;'(f) = SDF(szf) + Tf(szf): (2-11)
where the C;;’s are operators on K satisfying
Z eilc?ickl = g1, €1y = €2 T O,
it
g1 = €37 = 1. (2-12)

The self-adjoint field operator x(h) is defined
through Stone’s theorem' by

Ws(AR) = exp tax(h). (2.13)

The operator x{h) depends linearly on h and satisfies
the following commutation relation:

[x(h), x(ha)] = —(hs, Bha). (2.14)

According to the above identification of two
structures,

x(f + B9) = () + 7r(g),
where f,g € K, H = K @ BK.

3. VON NEUMANN ALGEBRAS#! AND
THE MAIN THEOREM

(2.15)

The set of all bounded operators commuting
with every operator in a set ¥ as well as its adjoint

~will be called the eommutant of ¥, and denoted

by '. One has A” DO A, A" = A’'. A set A is called
self-adjoint if T € ¥ implies T* & Y. A weakly
closed self-adjoint algebra of bounded operators
on a Hilbert space, containing the identity operafor,
ig called a von Neumann algebra. The von Neumann
algebra generated by a set ¥ is the smallest von
Neumann algebra containing % and is known to
coincide with 9.

Let H, be a linear subset of H and K, K, to be
two linear subsets of K. We define the following
von Neumann algebras:

15 Cf. J. Dixmier, Les Algebres d'operateurs dans Uespace
Hilbertien {Gauthier-Villars, Paris, 1957), and M. A. Neu-
mark, Normierle Algebren (VEB Deutscher Verlag der Wis-
senschaften, Berlin, 1959).
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Rs(H,/H) = {(Wh); h € Hl}’,r 3.1
R:(K,, K,/K)

= {UNHV(g;fE€ K, g € K,}". (3.2

Whenever there is no possibility of confusion, we
write simply Rs(H,) and R.(K,, K,) instead of
Rs(H,/H) and R (K, K,/K).

If we establish the correspondence between
Weyl’s formulation and Segal’s formulation as in
Sec. 2, we have

Rp(K,, Kz/K) = Rs(K, + ﬁK2/K (‘D BK). (3-3)

We will show in Sec. 4 that, for any subspace
H, of H, there are subspaces K, K,, and K, of H
such that H = K @ 8K, K, C K, K, C K, and
H, = K, + BK,. Hence one can go freely from any
statement about Rg(H,/H) to the corresponding
statement about Rz(K,, K,/K) and vice versa if
H,, K,, and K, are subspaces.

The von Neumann algebras for arbitrary linear
subsets H,, K,, and K,, and those for subspaces
(linear closed subsets) can be related by using
the following known lemma.'®

Lemma 3.1. Up(f) and Vi(g) are strongly con-
tinuous in f and ¢ with the strong topology of K
for f and g. Wg(h) is strongly continuous in h
with the strong topology of H for h.

From this lemma, we immediately have

Rs(H\/H) = Rs(H,/H), (3.4)
Re(Ky, Ko/K) = Re(K,, Ko/K).  (3.5)

In the following we assume H, to be a subspace
of H, and K,, K, to be subspaces of K.

There is a natural lattice structure for subspaces.
We define the lattice operations A and V by

H AH,=HNH, AH,=NH, (36

H VH,=H +H, VH,=2>H, (37
where /M is the set theoretical intersection and
> H, is the set of all finite linear combinations
of vectors in H,. Because of (2.5), the mapping
H, — BH*: is a complementation in this lattice.
(The lattice ean be defined by the partial ordering
H, C H, in terms of the set theoretical inclusion
among subspaces.)

There is also a lattice structure for von Neumann

algebras. We define

16 H. Araki and J. S. Woods, J. Math. Phys. 4, 637 (1963),
Lemma 2.3.
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Rl /\ R2 = Rl [—\R21 A Ra = mRav (3'8)

R VR, =R UR)”, VR,=(JR,", (3.9

where the R, are von Neumann algebras. B, — E|
is a complementation in this lattice.

Our main result is that Rs(H,/H) gives an
isomorphism between these two complemented
lattices. Namely,

Theorem 1.

(1) Rs(H,) DRs(H,) iff H, D H, (3.10)
2 Rs(H,) = Rs(H,) iff H,=H, (3.11)
() Rs(V H.) = V Rs(H.). (3.12)
@) Rs(A Ho)) = ARs(H.). (3.13)
(5) Rs(H,) = Rs(BH?). (3.14)

The theorem can also be stated in terms of Rz(K,,
K,/K).

Theorem 1’.

(1) Rx(Ki, Kj) D Re(K{", K}')
iff KIDK!, K,DKY. (3.15)
(2) R#(Ki, K3 = Rp(K{’, KY)
iff K/ =K/’ K,=Ky. (316
() R#(V K{¥, V K;¥)
= V RAK®, K™,  (3.17)
(4) Re#(A Ki¥, A K3¥)
= A RAK®,KI).  (3.18)
(5) R#(K., K,) = Re(K3, K7). (3.19)

The hardest part of the proof is the proof of (5).
This will be carried out in Secs. 8 and 9. Here
we will give a proof of (1)-(4) for Theorem 1.
Theorem 1’ follows from Theorem 1 through the
relation (3.3).

Proof of (3.10)-(3.18): (1) If H, D H,, obviously
Rs(H) D Re(H,). If H, D H,, then H: ¢ H3
and there exists b, & Hi, & H%. For this k,, there
exists h, € H, with (A, h,) = 0 so that

[W(Ah2), W(BR1)]
= W(Bh)WAhy)(e ™) — 1) = 0
for some A. Hence W(Bh,) & Rs(H,)'. Obviously,
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W(Bh,) € Rs(H,)'. Therefore Rs(H,)' C Rs(H,)'
which implies Rs(H,) D Rs(H,). (2) follows from
(1). (3) Since V. H. D H,, R(V. H,) D R(H.).
On the other hand, if &, € Vv, H,, then W(h, 4 h,)
and W), if » = lim h, exists, are in V., B(H,)
due to (2.6) and Lemma 3.1. Since elements of
V. H, can be obtained by taking a finite sum
of elements in H, and then taking the strong
limit, we have R(V . H,) C V. R(H,). (4) follows
from (3) and (5).

4. THE UNITARY INVARIANTS FOR H; AND §
AND FOR K, AND K,

In this section we characterize the structure
of the subspace H, C H and the operator 3 satisfying
(2.5) in terms of unitary invariants. As a byproduct,
we prove that the von Neumann algebra Rgs(H,/H)
can also be written as Rz(K,, K,/K) for a suitable
choice of K, K,, and K,. The technique and results
of this section will be used repeatedly later.

We first use the lattice structure (3.6), (3.7),
and the two kinds of complementation H, — HY
and H, — BH7; to separate out subspaces H®,
H® H" from H. The remaining part of the space
H, called H'”, will be studied by using the theory
of the graph of a closed operator. The structure
of H, and B will be characterized by dimensions
of subspaces H®', H®, and H* and by the equiv-
alence class of the spectral measure and the
multiplicity function of a certain positive-definite
self-adjoint operator «(8H!, H{/H'), where the
multiplicity function must be even.

Now suppose a subspace H, C H is given. We
define

H® = H, A BH,, H® = H} A BHY, (4.1
H® = K @pK"™, K = (H, A BH?Y), (4.2
H(O) = (H(Z) @ H(S) @ H(4))L (4 3)
Hi=H" ANH, = H A EKYDH”), (4
Hy= H*ANH®”) = H AN H?

= Hi A BK® @ H®):.  (4.5)

Note that (8H.\)* = BH%. The subspaces H®,
H® K™Y and BK™ are intersections of two sub-
spaces among H, Hi, BH, (8H,*. Obviously,
H® H® H®, and H* are invariant under the
multiplication by 8 and they are mutually orthog-
onal. We have the direct-sum decomposition

H = H(o) (_B H(?) (_BH(3) @ H(4)
Hl H{ @ H(z) (_D {0} (_B K(“,

4.6)
4.7

I
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BHY = BH, @ {0} D H® @ K™. 4.8)

We see then that the decomposition (4.6) reduces
B8 and at the same time reduces H, as in (4.7).
The structure of the subspace H, and the operator
8 is completely determined by the structure of
their restrictions on each of H', H®, H®, and
H®. In H®, the subspace H, occupies the whole
space, while it consists only of 0 in H®, In H,
the subspace H, has the property of the earlier K.
In each of these spaces, H®, H®’, and H*, the
structure of H, and 8 is determined by the dimension
of the space up to unitary equivalence, where the
dimension of H‘ is restricted to even numbers
or infinities.

By construction, any two of H!, H; BH{, GH,
have zero intersection,

Hi A BH{ = H{ A\ BH;

= H} A BH{ = H} A BH, = {0}, 4.9)

where H, = H!* A H”. As the dual statement,

we also have
H; Vv gH; = H; v BH]

= H{ vV gH; = H| v BH, = H®.  (4.10)

Conversely, the above stated structure or property
of Hyand Bineach of H® H® H® H“ uniquely
defines the decomposition (4.6) and (4.7). Therefore,
we now want to characterize H] and 8 in H”
using (4.9) and (2.5).

We first prove a lemma concerning a graph of
a closed operator.’”

Lemma 4.1 Given two subspaces M, and M,
of a Hilbert space M such that any two of M,, M,,
M*, M+ have zero intersection. Then there exists
a unique linear closed operator ¢(M,; M,/M) from
M, into M7 whose graph is M, Furthermore,
there exists a positive-definite self-adjoint operator
a(M,; M,/M) on M, and a unitary operator
U(M,; M,/M) from M, onto M+ such that

o(My; M./M)

= UMy; M,/ M)a(M,; M,/M)? (4.11)
(the polar decomposition),
o(M,; M./ M)*
= ao(M,; M\/MPUM,; M,/M)*,  (4.12)

17 After completion of this work, Dr. H. J. Borchers has
kindly brought the author’s attention to the article by M. H.
Stone, [J. Indian Math. Soc. 15, 155 (1951)] where a similar
analysis can be found.



1348

P(M)P(M,)P(M,)
= [1 + a(Mz; Ml/M)]_l on Ml. (413)

Here P(M,) is the orthogonal projection on the
subspace M, as an operator on M.
Proof. The operator o(M,; M,/M) is defined by

o(Mz; M\/M)h = ¥, (4.14)

whenever h & M, b € M4, and h + b’ & M,. Be-
cause M7 A M, = {0}, h = 0 implies A’ = 0, and
o(M4; M,/M) is a well-defined linear closed operator
from M, into MY with the graph M,. Because
M, A M5 = {0}, the domain D(e(M,; M,/M)) =
P(M)M, of o(M,; M,/M) is dense in M, and,
because M; A M4y = {0}, the range P(M%)M,
of o(My; M,/M) is also dense in M. Therefore,

o(My; My/MY* = —o(M5; M1/M).
a(M,; M,/M) is defined by
a(Mz}Ml/M)

= o(Mz; My/M)*e(M,; M\/M).  (4.15)

It is well-known'® that a(M,; M,/M) is a positive-
semidefinite self-adjoint operator with the domain
D(a(M,; M,/M)) C D(e(M,; M,/M)). Because
M, AM, = {0}, o(M,; M,/M)h = 0 implies h = 0,
and hence a(M,; M,/M) is positive definite.

We define

UM,; M,/ M)¥
= o(M,; My/M)a(M,; M,/ M)*®,  (4.16)

where we restrict ¥ to a(My; M./M)* D(a(M,;
M,/M)). This domain is dense in M,, and on this
domain U(M,; M,/M) is clearly isometric. Hence
the closure U(M,; M,/M) is an isometric operator
from M, into M?. Since the closure of the restric-
tion of a(M,; M,/M)* to D(a(M,; M,/M)) is
a(My; M,/M)} we have
o = UM,; Mi/M)a(M.; M,/ M)}

= U(My; Mi/M)a(M; My/M). (4.17)
Since a(M,; M,/M) is self-adjoint, ¢*¢, O a(M,;
M,/M)* immediately implies

oo = a(My; M /M).

Now if » & D(a(M,; M,/M)), we have

(1 + a(My; Mi/M)Mh = [h + o(Ms; Mi/M)R] — W,

(4.18)

18 N. I. Aichieser and I. M. Glasmann, Theorie der Linearen
Operatoren in Hilbert Raum (Akademie-Verlag, Berlin, 1954),
p. 102, Theorem 2.

19 For operators A; and As A1 D A, means D(A,) D
D(A,) and A& = A,¥ for any ¥ & D(A;) where D(A;) is
the domain of A4,
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W = o(M,; M./M)hk
— o(M; Mi/M)*o(M,; M:/M)h € M,
h + o(Mz; M,/M)h € M,.

Hence
PM)PM)PM)[1 + a(My; M,/M)]h = h.

For any ' & H,, we may take h = [1 + a(M,;
M,/M)1' € D(a(M,; M,/M)) and we have (4.13).

From (4.16) and (4.17), we have ¢, C o(M,;
M,/M). If M} is the graphof ¢, in M = M, P M3,
this means M, C M,. From (4.18) and similar
argument as above, we have P(M)P(M))P(M,) =
1+ «(My; My/M)])™" = P(M,)P(M,)P(M,). From
this we have M, = M, due to M, A M: = {0}.
Hence ¢; = o(My; M,/M), and (4.11) follows from
(4.17). Since ¢(M,; M,/M)M, is dense in M3,
UM,; M,/M) is unitary (ie., onto M*%). (4.12)
follows from (4.11). This completes the proof of
Lemma 4.1.

We now define

v(8; HY) = P(H)BP(H{) on Hj.
Since 8 is unitary, SP(H,)8™' = P(8H,), and since

B! = —B, we have
¥(8; H))* = —[1 + o(BH{; HI/H )] ™. (4.20)

Since v(8; H{) commutes with v(8; H!)?, it commutes
with the spectral projections of «(8H[; H|/H'™).
We define

(4.19)

I = [1 + a(8H{; Hi/HO)y(@; H).  (4.21)
T commutes with «(8H,) and satisfies
r‘= -1, r* = —T. (4.22)

Conversely, the operators «(8H!; H/H"”) = «
and T on H! and the unitary mapping U = U(BH!;
H!/H) from H! onto H’ completely determines
B according to the following formulas:

PH)BPHY) = T(1 + o, (4.23)
P(H})BP(H?) = (BH1; Hi/H")P(H))8P(H!)
= Urat(l + o)}, (4.24)
P(HDBP(HE) = — [PHZ)BP(HY)]*
= Iad(l + )70, (4.25)
P(H3)BP(H;) = —o(8H{; Hi/H™)*'P(H])8P(H})

= —Ur(1 + o) }0*. (4.26)

We now analyze the structure of o and T on HI.
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Since T commutes with «, we have the splitting®
H, = K| ® TK], “.27)

where K, is invariant by spectral projections of «.
As is well-known,” any positive self-adjoint operator
a is characterized by the equivalence class of the
(spectral) measure on (0, + =) and the multiplicity
function.

We now see that g and H{ are completely char-
acterized by the spectral measure u and the multi-
plicity function d(z) of the positive self-adjoint
operator «(8H/; H!/H'), where the multiplicity
must be even. Obviously, they are unitary invariants.
Furthermore, if x and d(z) are given, where d(z) is
even or infinite, we can construct the following
standard form for 8 and H;. Construct a Hilbert
space K, and an operator o’ such that the spectral
measure and the multiplicity are u and 3d. We
define H’ = K, ® R?, where R is a two-dimensional
real Hilbert space. Let I’ be the operator on R’
of the form (? ~(1)> Let H = H{’ ® R® where
R’ is another two-dimensional real vector space,

H, = H'® ((1)>, and

a’%(l + a/)*% ® T’ ‘

-1 + &) X IV
(4.28)

6 _ {(1 + a/)‘% ® I’
La’%(l -+ a')/% &® 1

We easily verify that 8 and H] satisfy the properties
(4.9) and (2.5). Furthermore, the above argument
shows that any g and H/, for which the spectral
measure and multiplicity of «(8H!; H!/H'®) is
equivalent to u and d(x), is unitarily equivalent
to this standard form. Thus we have:

Theorem 2. A subspace H, of a Hilbert space H
and the operator S8 satisfying (2.5) is completely
characterized (up to unitary equivalence) by the
dimensions d(H®’), d(H®’), d(K*’) of the subspaces
H® H® K“ [(4.1) and (4.2)], and by the equiv-
alence class of the spectral measure over (0, + «)
and the even multiplicity function of the positive-

2 Proof: Let 9 be the commutative algebra generated by
spectral projections of «. If A, B € 9, A* = A, B* = B, then,
due to [4, T] = [B, I'l = [4, B] = 0, we have (4f, BIY) =
—(BTf, Af) = —(Af, BIY), which implies (Af, BTf) = 0
for any f & Hy'. Let H(e, f) = Rf be the cyclic subspace
generated by R from f. According to the above, H(a, f) |
H(a, If). Let H(e, T; f) = H(e, f) @ H(e, If). H(e,, T; f) is
invariant under « and I. By transfinite induction, H =
2.8 H(a, T'; f,)forsome f,. Then we define Ky/ = 3,9 H(a, f,),
and have H = K" @ 'K/, where K, is invariant under R.

A For the multiplicity theory, see, for example, P. R.
Halmos, Introduction to Hilbert Space and the Theory of Spec-
tlrg;zg,?;llultiplicity (Chelsea Publishing Company, New York,
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definite self-adjoint operator «(8H!; H//H*’) [(4.3)
and (4.4); Lemma 4.1].
In the above discussion, if we define

K = K. @ U(BH!; H)K!, (4.29)
K} = BTK], (4.30)

then we have H” = K @K', H; = K| ® 8K},
K! C K9, K, C K. For H® and H®, we
consider any splitting H® = K® @ gK®, H® =
K® DBK®. Wedefne K = K" DK® QKPP
K*® K, = K| @®K® @0} BKY, and K, =
K;® K? @ {0} @ {0}. Then we have H =
K@ 8K, H, = K, ® BK,, K, C K, and K, C K.

From the equations H, = K, @ BK,, pH, =
K2@5K1; HJf = (K# A K) @ﬂ(KJE A K), ﬁHJf =
(Kt A K) @ B(KY A K), we see that any two
of H,, H%, BH,, SH have zero intersection if and
only if any two of K,, K,, K3 A K, K5 A K have
zero intersection.

Combining these results, we have:

Theorem 3. For any subspace H, of H, there
exist subspaces K, K, and K, of H such that H =
K®BK,H =K, ®BK,, K, CK,and K, C K.
Any two of H,, 8H,, H%, BH* have zero intersection
if and only if any two of K, K,, Ki A K, K5 A K
have zero intersection. If this condition is satisfied,
o(K,; K,/K) is the restriction of (8H; H,/H) to K,.

The analogue of Theorem 2 for the space K is
the following:

Theorem 2'. Two subspaces K, and K, in K are
characterized up to unitary equivalence by the
dimension of subspaces K = K, A K,, K® =
Ki ANK; K, =K, AN K,and K; = K, A K+
and by the spectral measure over (0, =) and
multiplicity function of the positive-definite self-
adjoint operator «(Kj; K!/K'®) where K, =
Kz/\K(O), l=1, 2’ K(O)z(K(2)+K(3)+K4+K5)J',
and any two of K/, K}, K!* A K, K/* A K
have zero intersection. If H = K @ 8K, H, =
K, @ BK,, then H®” = K® @ BK*”, H?® =
K(3) (_BBKUS)’KM) — K4(’B,8K5,H(O) — K(O) @61((0)’
H, = K @ BK}, «(K}; K{/K®) is the restriction
of a(8H}; H|/H) to K/, the spectral measure of
«(BH!; H{/H®) is equivalent to that of «(K};
K{/K ‘), and the multiplicity function of the former
is twice that of the latter.

5. PRELIMINARY ANALYSIS OF THE
VON NEUMANN ALGEBRAS

In this section we consider the consequences
of the splitting (4.6), (4.7), and (4.8) for the space
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$s(H) and the von Neumann algebra Rs(H,/H).
The following two lemmas will show that the
splitting (4.6)—(4.8) can be viewed as a splitting of
the degrees of freedom of the system into the
part H®, where the operators concerned, W(h),
k € H, are complete; the part H®, which is
irrelevant for the operators concerned; the part H”
where the center of the set of the operator concerned
is maximal Abelian, and the rest H® where the
operator set concerned has more complicated
structure.

Lemma 5.1.
Rs(H/H) = B($s(H)), (GBY)
E+(K, K/K) = B(©#(K)), (6.2)
R#(K,0/K) = Rq(K, 0/K), (5.3)
Rr(0, K/K) = R:(0, K/K). (5.4)

¥,(K) is a eyclic vector of Ry(K, 0/K) as well
as of Bz(0, K/K). Here B{(9) denotes the set
of all bounded operators on 9.

The proof of (5.2) and the cyclicity of ¥-(X) are
known.* (5.1) follows from (5.2). Since R7(K, 0/K)
and Fp(0, K/K) are Abelian and have a cyclic
vector, they are maximal Abelian® and satisfy (5.3)
and (5.4).

Lemma 62. If H = H' @ H", there exists a
unitary mapping S of H(H') X H(H') onto
$s(H) such that ¥s(H) = S(¥s(H') Q ¥s(H")),
W) = S(Wepth) ® Wrh))S8"' where h =
hy + by, by € H', by, & H”. Sis unique. Furthermore,
ifH, = H @©H',H CH,H!"C H", then *

Rs(H,/H) = SRs(H{/H) QRsH{'/H')S™. (5.5)

Because of the uniqueness of S, we often identify
Hs(H) K Hs(H") with H(H' @ H'') and shorten
the notation by omitting S in all equations.

Proof: S is defined by
S(W ()T s(H') @ W s(ho)¥s(H'"))

= Ws(h: + ha)¥s(H)

forany b, € H', h, & H”. 8 is obviously isometric.
Because of the cyclicity of ¥s(H), ¥s(H') and
¥ (H"”) [which follows from (5.1)], S is unitary.
S satisfies all desired property in an obvious way.

2 H. Araki and J. S. Woods, J. Math Phys. 4, 637 (1963),
Lemma 2.4.

31 E. Segal, Mem. Am. Math. Soc., No. 9, IT (1951),
Corollaries 1.1 and 1.2.

2 For the definition of the tensorial product of von Neu-
mann algebras, see, for example, J. Dixmier, reference 15.
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Lemma 5.2 If K = K' @ K", there exists a
unitary mapping S of H(K') & D-(K”) onto
+(K) such that T,(K) = S(¥x(K") ® ¥+(K")),
Ur(f)=8(Ur(f1) @ Ur(f-DS™, Ve(g) =8(Ve(g) ®
Ve(92))S™" where f = fi + fo, 9 = 90 + 625 fo,
o € K’'; f,, g € K”. § is unique, Furthermore,
if K, = K{ @K/, K, = K, ® Ky'; K}, K} C K';
KJ’, ki C K", then

Re(K,, Ko/K) = SR:(K!, K}/K")
R RKY, K /KNS, (5.6)

We also omit S in the following equations. The
proof is the same as for Lemma, 5.2.

By applying the above lemmas repeatedly to
(4.6)—(4.8), we obtain the following decompositions:

Ds(H) = 9s(H™) @ 9s(H ™)

ROH) @Os(H™), (6.7
Rs(H\/H) = Rs(H{/H®) @ B(Hs(H™))
@ 1QR(KY/H™), (58
Rs(BHY) = Rs(BHL/H™) @ 1
R BO®sH™) QRs(K/H®). (5.9
Due to (2.6) and (4.10), we have
R(H{/H®Y D Rs(8H;/H™),  (5.10)
Rs(H{/H®) Vv Rs(BH/H'”)
= B®s(H™). (.11

Therefore the pair of von Neumann algebras
Rs(H!/H'®) and Rs(BH}/H) is a factorization.
In Secs. 8 and 9, we will show that they are paired
factors, namely,

Rs(H{/H®Y = Rs(BH}/H®).

For other parts of the decomposition, we have

(5.12)

B@sH™) = (A1} in $s(H?), (5.13)
{1} = B@®s(H™)) in $s(H?), (5.19)

RS K(4)/H(4)); — RS(K(4)/H(4))
in SH™Y).  (5.15)

The last equation is due to H* = K @ K™
and Eq. (5.3). The duality equation (3.14) will
follow from the above equations due to the following
lemma.*

25 Tt is also possible to prove the duality equation (3.14)
without using this lemma. For this, we consider full space
H instead of H® and with only a slight modification, which
is indicated in the proof of the corollary in Sec. 9, the argu-~
ment of Secs. 8 and 9 goes through. However, this complicates
Inotation in Secs. 8 and 9, and we find it shorter to use this
emma.
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Lemma. 5.4. Let R, be von Neumann algebras
on9,l=1,2andlet H = H; ¥ .. If B, = B(H,)
or if R, is maximal Abelian on £, then (B; Q R,)’ =
R! ® R:.

Proof: If R, = B(9,),

(B: QR:) C{B, QD V QR
= EQ1 A (1 B(%)
=EQQD ABOIOD =RQL

On the other hand, R, ® 1 C (R, ® R.)'. Hence
(R, @R, = R{®1 = R, Q R} If R, is maximal
Abelian, then we have a spectral decomposition
9. = L,(Eu), R, = multiplication algebra of
bounded L, functions f(£), £ € E, and § = [ ,; du(),
@15 ~ @1, R1 ® R, = f Rxe dﬂ(f); RIE ~ Rl-
By a known theorem,”® we have (R, Q R,) =
J Bl du(®) = (BRI ® R, = (B] Q R)).

By the analysis of this section we have reduced
Eq. (3.14) to (5.12).

6. CREATION AND ANNIHILATION OPERATORS

The original construction®” of the normal rep-
resentation of CCR’s uses the tensorial construction,
which will be discussed in the present section.
The important notions are the total particle number
n and the polynomial algebra of creation and
annihilation operators. We define generalized crea-
tion and anihilation operators, which correspond
to a homogeneous polynomial of conventional
creation and annihilation operators. Their mul-
tiplication rule is given by Lemma 6.1. Equation
(6.30) gives a unique expansion of an arbitrary
bounded operator in terms of homogeneous poly-
nomials of creation and annihilation operators of
ascending degrees. The connection of the tensorial
construction of this section and other constructions
of See. 2 will be discussed in the next section.

Let L be a complex Hilbert space and L® be
the tensor product of n copies of L. If n = 0, L®
is defined to be the complex one-dimensional vector
space. The mapping

& - ®hn—>hp.-lu) ® ®hP“(n)

for any h; & L defines a unitary operator U(P)
on L®" for each permutation P of n indices. {U(P)}
is a unitary representation of the symmetric group
&, and L® can be reduced into inequivalent
irreducible representations. The totally symmetric

26 J. Dixmier, reference 15, p. 184.
27 See reference 2. See also J. M. Cook, Trans. Am. Math.
Soc. 74, 222 (1953).
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part of L®" will be denoted by Sym L*®". The projec-
tion operator on Sym L®" is given by

BE&™ = L 3 UP). ®.1)
n! 5
We define Sym L& = L®° and E&™ = 1.
We now consider the complex Hilbert space
(L) = X7 Sym L*. (6.2)

n=0
The projection operator for the subspace Sym L®* of
Hr(L) will be denoted by E,. n is the total particle
number.

Let A be a bounded operator mapping Sym L&
into Sym L®". Let A be the extension of 4 to an
operator from L®* into L®", being A on Sym L®"
and 0 on the orthogonal complement of Sym L%
Let 1, be an identity operator on L. Then 4 ®) 1,
is an operator from L®™" = L% & L% into
L™ = [ ® L%, and EF™(A @ 1,)E®™ can
be considered as an operator from Sym L&"** into
Sym L®™". We denote by Sym (4 ® 1,) the
operator on $r(L) which is EF*(A ® 1,)E¥™ on
Sym L®#“*" and 0 on its orthogonal complement
in $,(L). Finally the generalized creation and
annihilation operator is defined by*®

@ 4a) = 3 oo + 0! (m + oyerp

X Sym (A ® 1,). (6.3)
We define this operator only on the domain
N
D= \J > Sym L®. (6.4)
N =n=0

The right-hand side of (6.3) is effectively a finite
sum on D. (a'Aa") with domain D is not closed.

Ifm = 0,n = 1, we write (f*, @) where f € L
and f* is the mapping from L into complex numbers
givenby g EL— (f,g).If m =1, n =0, we
write (a', f) where f &€ L. They are conventional
annihilation and creation operators.

Lemma 6.1.2°

@™Aa™)* D (a™4*a™), (6.5)
(@' A4,a")(a"™ A4,a"
min (k,n)
=78 (e errat, 6o

** This definition is obtained by considering the integral
operator B with the kernel function Bz, -+« Zm; y1 +++ ya)
and by substituting a well-known definition of creation and
annihilation operators a(x) and a'(z) into the expression

Jal(zy) -+ @M @2m)B(z1 + Tms Y1 v+ Ya)a(yr) -+ a(yn)
dz dy.
29 The formula in this theorem can be obtained by a formal
calculation using the expression of footnote (28) and applying
the well-known commutation relation (6.12).
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Fl = E:ink‘—t(jl ® lk—t)(lm-—t ® Az)Ensfzn—c- (6-7)

In (6.7) it is important that the operator A, meets
with 1,,_, on its right, the operator A, meets with
1,_, on its left and only ¢ legs of A, meet with
those of A,.

Proof: For (6.5), we have to prove
(@, @"4a)d)* = (@, (@"4*a™T)  (6.8)
forall ¥ & D. Since (A @ 1)* = (A*® 1,) =
(;1\* X 1,), we have
(¥, 8ym (4 ® 1)®)* = (¥, Sym (4* @ 1)¥)

for any ¥ and & in $,(L). Hence (6.8) follows.

For (6.6), it is enough to prove the matrix elements
of the equation between states ¥ & Sym L# and
® € Sym L¥ for arbitrary p and ¢. If p — o
(m+ k) — (n+1D,ore <lorp < m, both sides
of Eq. (6.6) vanishes and therefore the equality
holds for such a case. f p —o =m 4+ &k — n — |,
o = I, p = n, then the left-hand side becomes

[o+n—m)lpllc+k—Dlc!/(p—m) VP — DI}
X (@, (4, ® 1, )EXTu(4: ® 1,.)9).  (6.9)

We now substitute ES2,, = (¢ — I+ k)I™' D_» U(P).
If P brings S of last (¢ — I) indices again into
the set of last (p — m) indices while bringing other
(¢ — 1 — 8) of last (¢ — 1) indices into the set
of first » indices, then that term gives

@, (A @ Lon-)(1lomis ® 4) @ 15]9)

because A, and & are already symmetrized. The
number dg of the permutation P which fits the
above description is given by

ds=[a'—l[p—m
S S
X ](U—Z'—S)!k!
co—1—8

=(— D! (p— m!mkl/S!

X(p=-m—-=8)le—-1—-—8!ec—1—n— 8
Therefore (6.9) is equal to

St

n

min (p~m,e—1)

Cs@[(4, @ 1,-0-5)

X (Lo-ims @ 45) ® 15]9),

Sw=wo—n—1
(6.10)
where

Cs=dsllp+n—m)lplc—14+kK!
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X al/(p — m)Pec — DIPHe — 1+ B

=[pzo!/sﬁ]*[ n ]

S+1l4+n—¢

x{ k }(S+l+n—a)!.
S+1+n—c¢

By settingt=S+1l+n—-c=84+k+m— p,
we see that (6.10) is the same as the right-hand
side of (6.6). This completes the proof of Lemma 6.1.

Corollary 1. If f = EX™[ Q ~+ Q fm g =
Ensym 1 ® e ® Gny fiy 9. € Land 4 = fg* [i.e.,
Ag' = (g, g")f for any ¢’ € Sym L®"), then

@™4a) = @', 1) -+ (@F.)(gta) -+ (g%0). (6.11)
By repeated applications of (6.6), we obtain (6.11).
Corollary 2*° 1ff,g € L,

[g*, @), @] = (g, D), (6.12)
@, p* = (%, @), (6.13)
(¢*, &%, = 0 if ¥, € Sym L*. (6.14)

(at, f) is linear in f, and (g*a) is antilinear in g.
¥, € Sym L% is in the domain of any polynomial
of operators (a'f;), f; € L and is cyclic vector
of the set of all such polynomials. The foregoing
properties, where (6.13) may be weakened to
(a', )* D (7%, a), determines the structure consisting
of the Hilbert space $r(L), the cyclic vector ¥,
and the closed operators (a'f), (g*a) up to unitary
equivalence.

Proof: The stated properties except for (6.13)
are trivial consequences of definitions and the
Lemma 6.1. Equation (6.13) will be proved shortly.
The uniqueness of the structure _consisting of
$r(L), ¥, and the restriction of (d'f), (¢*a) to
the domain D is well-known. The property (6.13)
will then guarantee the uniqueness of the closed
operators (a'f) and (g*a).

We now prove (6.13). From (6.5), (a', )* D (*, a).
We have only to prove D[(a', f)*| = D[(*, a)].
Let L(f, n) be the subspace spanned by vectors
(a'f)"Q@¥, where Q is an arbitrary polynomial of
(a'fs), fi L {. We easily see that L(f, m) 1L L(f, n)
for m # n, and

L= X°L¢,n.
n=0

Let E(f, n) be the projection on L(f, n). If ¥ €

% We follow the physicists’s convention that the inner
product (g, f} in & complex Hilbert space is linear in f and
antilinear in g,
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L(f, n) N\ D, then (a', f) ¥&€ L{f,n + 1) (f*, ¥ €
Lf,n — 1) (= 0if n = 0), and ||(f*, a)¥|* =
n(f, H) ||¥]]*. Since L(f, n) M D is dense in L(f, n)
and since (f*, a) is bounded on L(f, n), L{f, n) is
in the domain of (7*, @). f ¥ = > ¥, ¥, & L{{, n)
and X n ||¥,|]° < =, then

N — e e
Yy = 2 ¥, >¥ and (f*, a)¥y— 2 (*, )¥,.

n=0 n=0

Hence
D[(f*, )] D {\P; Zn [|E(¢, n¥||® < w}- (6.15)

On the other hand, if ¥ & D[(at, H*], and ¥, =
E(f’ n)\I” then E(f; n)(af; 7‘)*‘1’ = E(f, n)(aTr f)*‘I’nn
due to (o', )L(f, n) C L{f, » + 1) and E(f, n)(a',
D*¥ir = (f*, a)¥..; due to (o', )* D (f* a) and
DI(f*, )] D L{f, n + 1). Since 2., [|E(f, )3 < o

for any ¥, we have

ST Ol = Z 0+ 1) W] < .

n=0

Hence
DI, 91 C {2 T 16, m¥1F < = f- 6.15)
Sinee (f*, a) C (a*, )*, (6.15) and (6.15") imply (6.13).

Remark: The above proof and a similar argument
also show that

D((@", f) = D((f*, a))
= {‘If; ;n 1B, m¥]|* < 00}. (6.16)

For the sake of application in Sec. 10, we add
a further definition. Let v be an operator on L
with |[v]] £ 1. v®" is then an operator on L®" which
leaves Sym L& invariant and [v®"|] < 1. (This
can be proved in a similar manner as the proof
of Lemma 10.4.) We use the same notation +®"
for its restriction to Sym L®". Then the tensorial
extension of v on (L) is defined by

T() = g*’*ﬁ" (]| = 1).

Here, v®° is defined to be 1. ||T(»)|| = 1 and T(v)
commutes with F,. Furthermore,

(6.17)

Tw)Tw,) = T(vlv.?); (6.18)
Tw* = TE*), (6.19)
lim T@,) = T{limyv,), (6.20)

n-»00

where the limit is in strong sense and lim v, is
assumed to exist. Equations (6.18), (6.19), and
(6.20) can be checked easily on each subspace
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E.9(L). Sinee ||T{(v.)]] £ 1 independent of =,
and since

$r(1) = X° E9:(L),

(6.20) holds on the entire space H.(L).
If v is unitary, then T'(v) is unitary and we have
T@)(a™Aa)T@*) = (@™®" A*)®a"). (6.21)

[2¥.¢

If K is a self-adjoint operator on L, then T(e™") is
a one-parameter family of unitary operators and
we define the self-adjoint operator Q(K) by

T(™™) = ™9, (6.22)

Q(K) coincides with (¢'Ka) on D if K is bounded,
and essentially self-adjoint on D.

Finally, we discuss an expansion of an arbitrary
bounded operator B on $r(L) into generalized
creation and annihilation operators. We define

B.,. = E,BE,. (6.23)

Furthermore, we define an operator [B],, from
Sym Lg' into Sym Lg' by the following recursive
formula:

min {k,1)

B,. = [mInl/tP}

X Sym ([B]m—t.n-—t ® 1:)-
This can be solved explicitly and we obtain™

t=0

(6.24)

min (k,1)

2 ok, ; Sym Bi-r.,-. @ 1,), (6.25)

t=0

{B}k.l =

alk, ;0 = Ck — 11 — DY, (6.26)
¢, = 2 (=" > AREEAS
n it rretiget, ti21
N2 (6.27)
-1 (;l_x.)e =
It is also econvenient to define
[Bly = MZN (@"™[B)...a’). (6.28)

Because ) E, = 1, we have from (6.3) and (6.24)
the following expansion:

(®BY) = ,,Zz: (®(a™[B],..a)¥)
= ; (2[B15Y),

where ® and ¥ are restricted to D. (The summation
terminates at finite k, [ and N.)

7. THE CONNECTION OF THE SPACE $,(L)
WITH $r(K) AND$S(H)

Let L = K 4 4K be the complexification of
a real Hilbert space K. It is easy to show, that

*1n (6.25), By ;- and Sym(Bi_s,—_: & 1,) are used
ag operators on Sym L® instead of gper;t%s ton Or(L).

(6.29)
(6.30)
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in (K), ¢r(f) and 7r(g) can be operated on
¥ (K) repeatedly. Let Dy be the subset of $r(K)
consisting of vectors Q¥ (K) where @ is an arbitrary
polynomial of ¢z (f;) and 7z(g;). For any h = f + ig;
f, ¢ € K, we now define the operators (as, h)
and (h* ar) on Dy by

(a;, B = 2—*((017@ + tor(g)

+ melg) — we(N¥, (7.1
(h*, ap)¥ = 2—*(¢F(f) — ter(g)
+ 7(g) + ww(T, (7.2)

where we restrict ¥ to D. Obviously (a7, h) and
(h*, ar) can be applied on ¥r(K) repeatedly.
¢r(f) and wr(g) can be written as

or()¥ = 27¥(ar, ) + (*, an)¥, (7.3)
Q¥ = 27%((ay, 9) — (g%, ar)¥.  (7.4)

Therefore, any vector in Dy can be obtained by
applying a polynomial of (aj, k) and (h*, az) on
¥(K). Because Ur(N¥#(K) = 2 nlo(f)"¥(K),
Dy is dense in Hr(K). (Cf. Lemma 5.1.) Other
properties required for (af, h) and (h* a) in the
Corollary 2 to the Lemma 6.1 follow immediately
from the definition (7.1) and (7.2) and from the
linearity in f and g, Hermiticity, and CCR’s of ¢(f)
and 7 (g). Therefore we have the unitary equivalence:
Dr(K) = 91K +_iK), Te(K) = W, (ar, b) =
(a', k), (h* ar) = (B* a). Since D C D, we may
also write (ag, ) C (at, k) and (&*, az) C (h*, a).
It is rather easy to prove®

or(f) = 274(ar,  + (%, ax))

D 27¥(ar, ) + (%, ar),  (7.5)
xr(g) = 27%((ak, 9) — (g%, ar)
D 27%((ar, 9) — (g%, ar).  (7.6)

For a given L, the choice of K is not unique.
On the other hand, for a given K, we have a canonical
way of constructing L and H by L = K + iK
and H = K ® R?, where K may be identified with

K® (3) and Bwith (‘1’ = (1)> so that H = K @ 6K.

These two, L and H, are uniquely interrelated
and this relation can be formulated in the following
way without going through K.

}. For a given L, we introduce a new real inner
product ( )z by

f,9:=Re(f,9), f,9€L.
8 This is a particular case of (7.12).

(7.7)
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(f, 9)¢ is real linear in f and g, symmetric and
positive-definite and L is complete with respect
to this real inner product. Therefore L, with this
inner product, is a real Hilbert space, which we
shall denote by L. The multiplication of ¢ in L
induces an operator on L, which will be denoted
by 8. This g satisfies (2.5), and

where f and ¢ are f and g considered as an element
in

Conversely, if H is given, we define a new complex
inner product ( )z by

(hly hz)ﬁ = (hl, hz) - i(h], 6h2)- (7.9)

We also define the multiplication of the complex
number ¢ + ¢ by the multiplication of a + 8b.
Then (hy, h.)z is linear in h,, antilinear in h,,
Hermitian and positive-definite, and H is complete.
H becomes a complex Hilbert space which we
denote by H. If H = I, then A returns to L and
vice versa. The correspondence is uniquely defined
by (7.7)-(7.9).

In $s(H), x(h) can be operated on W(H)
repeatedly and we define Dg to be the subset
of Hs(H) consisting of all vectors Q¥ (H), where
Q is an arbitrary polynomial of x(k;). If $s(H) is
identified with $(K), with K @ 8K = H, then
Dg = Dy. On Dg, we define operators (alh) and
(h*7 aS);

(@sh)¥ = 27 x(h) — ix(BR)¥,  (7.10)
(h*, as)¥ = 27 x(h) + ix(BR)Y,  (7.11)

where ¥ & Dg. With the help of the identification
Hs(H) = 9:(K) = $,(K + 1K), we see the
unitary equivalence, $s(H) = $.(H), ¥s (H) = ¥,,
(as, ) C (a', b), (h* as) C (h* a). Tt is easy
to prove®

% From the proof of the Corollary 2 of the Lemma 6.1,
the last inclusion in (7.12) is easily obtained. To prove the
first equality of (7.12), let x, = (at, k) + (h*, @), ¥ € D(x*),
and ¥, = E(h, n)¥. Since D(%:1) O L(h, n) and % = x.* on
L(h, n), we see that E(h, n)x,*¥V = E(h, n)x:(¥ns + ¥n1).
Since (a*a)}(h*a) = n on L(h, n), [|[E(h, n)u¥unll? =
(n + 1) ¥ For a given ¢ there exists N such that
Zo-y 1B, nha*¥|? < & and =, |IW.]2 < & For
these ¢ and N, there exists k£ and I such that & > N, I > N,
2k |‘I’2k’2 < & (21 + 1) |[orl]? < & beeause |2 =
2o {Wnll* < o and 3oy 1/2k = Ty 1/(20 + 1) = w.
Then ¥, = *11 ¥, + T2} ¥o,y; satisfies | ¥ — @) < ¢
and ||[x*¥ — x:%,|| < 3e. Hence D(31) = D(x*) and %1 = xi¥,
which proves (7.12). If we define ¥* = [nl(h, A) ]~} h*, ayv,,
we easily see that D(x*) = {¥; X |l(n + )Wt +
n¥y |2 < o}, From this we have D(xi(k)) N D(x(8k)) =
D((at, h)) = D((h*, a)) and (7.13) and (7.14) follows. The
equality of (7.12) can also be obtained by ecalculating the
defect indices of x;.
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x(h) = 27¥(as, B) + (&*, as))

D2l B + % as), (712
(as, h) = 27Mx(R) — ix(BR), (7.13)
(h*, @) = 2 Xx(h) + ix(BR)). (7.14)

Let v be a unitary operator on L and we identify
©s(L) and $.(L) as above. By using W(h)¥ (L) =
32 o 1/nt x(h)"¥5(L), we can directly prove

TO)W(h)s(Ly = Wehyws(L). (7.15)
From this we have
TeWETE) ™ = Wth), {7.16)
TO)UNV()Tw™
= CU(Revf — Imog)VyRevg + Imof), 7.17)
C = exp i[3(Re of, Im vf)
— fRevg, Imvg) — (Imof, Imwg)], (7.18)

where Re and Im refer to the decomposition L =
K + 4K, and we omitted the A symbol in {7.17)
and (7.18).

8. PROOF OF THE DUALITY THEOREM (1)

We now prove (3.14) in this and the following
sections. In See. 5, we have already seen that it is
enough to prove Eq. (5.12). We use the unitary
equivalence Ps(H®) = $,[@ ) considered in
See. 7.

If R, commutes with B, and R} commutes with
R}, then the two von Neumann algebras R, and
R, are the commufant of each other. Therefore,
we take an arbitrary element B from R(H{) and
an arbitrary element C from R(8H}) and see
whether they commute with each other. In this
section, we will prove that ' commutes with [Bly
for every N. In the next section, we will prove
that ¢ commutes with B.

Since B commutes with W(AR) for any b & H]
and real A, BD(x(h)) C D(x(k)) and (B, x(h))¥ = 0
for any ¥ & D{x(h)). Since D{x{(h}) D D, we bave

{®, (Bx(h) — x(WB)¥} = 0 (8.1)
for any &, ¥ € D, By using the Lemma, 6.1, we have
V2 [Bx(h) = x(B)Bln.

= @ + DBlusah — (m + DA*Blarn, (82

where the notation on the right-hand side is defined
by ({B}m,ni«lﬁ'}g = N {B}m.né»lEi‘?}:ﬁ ® g fOI' any
g € Sym L®, and h*[Blnss.. = {{B}fﬂ-z.nk)*- Thus
(8.1) implies
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® 4+ D[Blnmih = (m + Di*[Blawi.,  (8.3)

for any b & H{. Similarly, for any b € gH],
® + D[Clamnh = (m + DA*[Clasrme (8.4

We note that the conditions (8.3) and (8.4) separate
into independent conditions on each [Bly and
[Cly. As a simple corollary of this observation,
we obtain

[[Bly, x(W¥ = 0

for¥ € Dand h © H,.
We now use the definition (6.28) and Lemmas 6.1,

[[Bly, [CL:]

8.5

N+ L min{p, N+ L—p)

Yep— -
=BT WG, pavie,

.0 =53 = (V7 ") E)a
X ([Blnvom @ L) Ayemme X [Chi o)

. ("?)(L e @ 10

mik=p
X (lekw: ® {B}m,N-‘a)}Ef’iu}wp«-h (8‘7)

where m runs from max (0, p — L) to min (N ~ ¢,
p — 1) in the first summation, and from max (t,
p — L 4 t) to min (N, p) in the second summation.
In order to utilize the properties (8.3) and (8.4),
we consider the following device. Due to the Theorem
3, there exist subspaces K, K, and K of H®
such that H® = K @ K, K{, K}, C K,
H] = K| ® BK!, and any two of K}, K, KI* N K,
Ki* N K have zero intersection. SH} is then
K- @ BK( .
In terms of operators «(Kj; K{/K“) and
U(K}; K{/K®), introduced in Sec. 4, we define
two nonorthogonal projections E] and E; by

E{ = P(K}) — U(K3; Ki/K®)

X a(K5; KI/K*)PKD),  (8.8)
E; = P(R* N E*) + UKS; Ki/K®)
X (K5 KI/KY PR, (8.9)

They satisfy E{* = E{, E;* = E., B! + E; C P(K™),
and if

= € K N Dla(K}; Ki/K ) PR,
z=FEz+ Bz, EzxEK*NKD,
Epx € KI*N K™,
The adjoint of E{ and Ej satisfies for any

(8.10)
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7L N K(O)/K(O))§
X P(Ki* N K™)],
z = El*x + Ei*zx, E{*x € K{, E{*x & K].

z € K N Dia(K};

(8.11)
We now introduce the spectral projection of
«(K3; K{/K®),

a(K; Ki/K'®) = [)dE()x), (8.12)

where E(A) = [4 dE(\) are the spectral projections
of a(Kj; K!/K) acting on K] for any Borel
set A. We define the projection operator E, on
K(O) - K{ @ (ng_ m K(O)) by

E. = Ie. ®) + UK} Ki/K)
X E((e, =))U(Ks; Ki/K®)*.

Furthermore, we define two operators on K” by

(8.13)

E,.=FlE,, E,=ZEE.. (8.14)

They are bounded operators and satisfy
E,.+E,.=E, (8.15)
limE, =1 (on K'*). (8.16)

€0

Any linear bounded operator on a real Hilbert
space K can be uniquely extended to a linear
bounded operator on its complexification K -+
iK™ = B, We denote the extended operators
by Elu E‘M and Ee- Let { :«6}7 { 12:}; {gie}; {gze} be
orthonormal bases for E.K{, E. K}, E(K;* N\ K),
and E,(K!* N K), respectively. Then {fi‘}, etc.,
are orthonormal bases for E.(K! + iK!), etc.

Furthermore,
Bio= 20 X diigi (o (8.17)
B = 2 X difi(@i0*, (8.18)
where
d,s = E. S0 = (¢ E.f9,  (8.19)

I = 1, 2, and the summation converges in strong
sense. [4,f* is an operator such that 4,f*z = (f,, 2)¢,.]
Note that d,; is real.

We further introduce the following notation:

mm—Ham (8.20)
w =L L (8.21)
o= §“® - @ 4 (8.22)

We then have the following equations on H®* with
strong operator topology:
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gZZ ZZMMWW
—e ‘E®t
ZEZ zzmmwm%

(} »n ve

(8.23)
(8.24)

We now return to (8.6) and consider the following
operator A.,:

Ae = ([C]k,L—k ® lm—t)(lL—k—l ®E®it ® lm—l)
X Azot-t @ [Blwy-m). (8.25)
We insert (8.23) for E®' and use the following

equatlon Whlch follows from (8.3), (8.4), and
Bgv = zgn ﬂgt = _’5!7"51 ete. :
020 By, fi
= Dy B Bl (820
t ! lie
(i_n—t"-) [C]m,nﬂgl(rl’
(m + t)' ( I)H-Zl (gll}e)*[C]m+l . (8.27)
With the aid of (8.24), we now have
Ae = G(lk ® [B]m—t,N—m-I-t)(lk ®E;®‘ ® lN—m)
>< ([C]k+t.L—k—l ® lN—m)y (8'28)
where
(N —-m+ t)(k+ t) /(m)(L—k)
G = ( ¢ ; t! : ; &l
(8.29)

Because of (8.16) (which implies lim.., B. = 1
on K(O) + iK(O)),

(IC)i,2-+ ® 1n-)(Az-s=i & [Blm,v-m)
= G(1; @ [Bln-t.y-m+0)
X ([Clstyr-s-t @ Ly_m).
If we use the equality
(L @ [Blnet v-me ) ([Cliss k41 @ Ly-n) EN"5-,
= E7[Bln-t y-mste @ 1)
X (Iy-m @ [Clise.s-)ExT-.,  (8.3D

we see that the term with m and % in the second
summation in the bracket of (8.7) cancels the
term with m — ¢ and k& + ¢ in the first summation.
As m runs from max (t, p — L + ) to min (&, p),
m — truns from max (0, p — LY tomin (N — ¢, p — ¢).
Therefore the second summation exactly cancels the

(8.30)
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first summation in (8.7) and we have

{[Blx, [C1.}¥ = O (8.32)
for any ¥ & D. By (6.30), we have

for any ®, ¥ € D.
9. PROOF OF THE DUALITY THEOREM (2)

We now prove [B, C] = 0 from (8.33). Since
C¥ and C*® may be outside of D, we cannot use
(6.30). It is enough to prove

(¥, [B,C]®) =0 .1

for ¥ and & in a total set (i.e., a set whose linear
hull is dense). We use vectors of the type ¥ =
AVg(H®), ® = AWg(H®), where

A= X(hl) e X(hn)v
A" = x(h]) - x(hn),
with ks, k! € HI.

Lemma 9.1. The set of ¥s(H®) and A¥s(H),
where A is given by (9.2) with h; € H{ and arbitrary
n, is a total set in Hs(H).

Proof: Let £ be the set under consideration. Let
9. = Sym HV® §; = 31, S.and Ry = £ N Hy.
It is enough to prove &, = &, for n < N implies
the same for n = N, because 8, = ;. As is easily
seen, the vectors (af, h)¥ with ¥ & 9y_, and
h & A span $y. Since (a', k) is bounded on any &,
and continuous in &, and since H, + gH, = H®
by (4.10), and 8., = Dy-: by inductive assump-
tion, (ath)¥ with ¥ & 9y_, and h & H{ 4 BH!
span Oy. If h = hy + Bhy, hy € H!, h; € H!, then
@h)¥ = V2 [x(h) + ix()¥ + ¥ where
¥ E ‘QN-I and ¥’ = (;ﬁf - 7/71,’;, a)‘I’ e ﬁN_z. Hence
(at, A)¥ € §y and we have Ry = Hy and & =
Ds(H®).

We now use the device of Garding.**
Lemma 9.2. If ¢(\, +-- \,) € 8, (the set of in-
finitely differentiable fast decreasing functions in

the sense of Schwartz), ¥’ is an arbitrary vector,
A is given by (9.2) and

9.2)

It

W, = [ Woum) - Wouk)
X ‘P()\l e )\n) d>‘l e d>\n1 (9'3)

then W ¥’ is in the domain of A* (as well as that
of A) and

AWy =W, ¥, 9.4)

3 L. Gérding, Proc. Nat. Acad. Seci. US 33, 331 (1947).
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where

, 0
N

> Ai(hiﬁhn>> e

12<a

X <¢ a—‘: - )\l(h,th))<i a—i—)tp

Proof: The integral of (9.3) converges in the
uniform topology of operators and W, is a bounded
operator for any ¢ € 8, and is continuous in ¢ € 8§,.
It is known that, if \™'(W(Ah;) — 1)V, has a strong
limit as A — 0, ¥, is in the domain of x(h;) and
the limit is 4x(h;)¥.. By the change of integration
variables, we easily see
lim AN(W(Oh) — DWW, ¥,

A=0

9.5)

= W_gean¥1 = tx(h) W, ¥,.

For x(h;), we first bring W(\;h;) in (9.3) to the
extreme left by using W(A\R)IW R = W(\h;) X
W(\h)er ™ *#) Then we use the similar calcula-
tion as above and bring W(\;k;) back to the original
position. We then obtain (9.4) with (9.5). This
completes the proof of Lemma 9.2.

If o.(A) € 81 0(N) = 0for A| < ¢ 0.(A) > 0
and [ o.(\) d\ = 1, then we easily see that W,, — 1
strongly as e — 0. [W(A\A) is strongly continuous so
that, for any given Wand § > 0, |[(W(A\R) — 1)¥|| < 6
for sufficiently small A, for example, for A\| < ¢, and
[[((W,., — 1)¥]| < §.] We use the following notation:

Pen = I_I] ¢e()‘i)1 (9.6)
W= W,,., 9.7
W= [ Woukp - WOk
X @m coo M) dN -+ dN,. (9.8)
We then have the properties
lim W, = lim W, = 1. (9.9)

e—0 €'=0

[Note that [ W(AR)e.(A) d\ is uniformly bounded
with norm 1.] Furthermore, for any vectors &, and
¥,, W.¥, is in the domain of A* and W’*¥, is in
the domain of 4%,

Since W., W, € Rs(H{/H®) C Rs(BH/H™Y,
W.CW'. € Rs(8H}/H')'. Replacing C by W.CW",
in (8.33), we have

(Blzw, W CW..®) = (¥, WLW.[B].9),

where ¥ = AU (H®) and & =
Due to (8.5), we have

(9.10)
A"I’S(H(O)).
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([BItWo(H™), AXW LW ®)
= (A*W/AC*W*T, B.Yo(H'™).  (9.11)

Since [BI¥¥s(H'?) = E ,B*¥s(H?), [B],¥,(H”) =
E.BY,(H®), and >, E, = 1 in strong sense, we
obtain, by summing up (9.11) for L = 0, 1, - - -,

(B*o(H®), A*W CW'.8)
= (A*WAC*W*¥, BU(H™)  (9.12)

Since B and B* commute with each x(%;), k: € H!
[by the assumption B € R(H!/H)’], we obtain

B*Y, WCW..d) = (¥, WLW..B®).
By taking the limit ¢ — 0 and ¢ — 0, we have
(B*¥, C®9) = (¥, CBY). (9.13)

Since ¥ and & form a total set in Hs(H”) by
Lemma 9.1, we have [C, B] = 0 and the duality
equation (3.14) is proved.

10. THE TYPE OF THE VON NEUMANN ALGEBRAS

In this section we will prove the following
theorems:

Theorem 4. Rs(H,/H) is type I if and only if
a(BH!; H!/H) is in the trace class, where H]
and H” are defined by (4.1)-(4.4) and the operator
a on H! is defined in Lemma 4.1.

Theorem 4'. Rp(K,, K:/K) is type I if and only
if «(K}; K{/K'”) is in the trace class where notations
are the same as in Theorem 2.

Because of Theorem 3, Theorem 2’, and (3.3),
Theorem 4 and Theorem 4 are equivalent; therefore,
we prove Theorem 4’

As has been seen in Sec. 5, Rg(KY/H) is the
center of Rq(H,/H) and Rs(H,/H) is type I by
definition if and only if the factor Rs(H'® @
H/H® @ H® @ H®) is type 1. Therefore, we
look for the necessary and sufficient condition that
RF(K; @ K(Z), Ké (_B K(Z)/K(O) (_B K(2) C_B K(3))
is type 1.

We use the criterion for the factor of type I
given by the following lemma.**

Lemma 10.1. A von Neumann algebra R on a
Hilbert space $ is a factor of type I if and only
if there exists a tensor product decomposition

D = 9H ® ; such that B = B(H;) ® 1 and
R =1 B(9.). (Here “=""is always in the sense
of the unitary equivalence.)

We now consider the decomposition of the

35 J. Dixmier, reference 15, p. 124.
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spectrum of «(K}; K!/K) into continuous and
discrete parts. Correspondingly we have the de-
composition

K[ = K,. @Kw, K; = KZc @sz,

K® = K.® K, (10.1)
a(Ké; Kf/K(O)) = oy, @ aiq, (10-2)
where a,, is the continuous part of «(K}; K{/K'®)

operating on K,,, a,; is the discrete part of «(K};
K!/K) operating on K,;, and the rest of the
notation is defined by

K. = K,. ® UK}; Ki/K)K,., (10.3)
K, = Ky, (‘B U(K'.{, f/K(O))Kldy (10-4)
K, = K, N\Kj, K,, = K; "\ K}. (10.5)

By Lemma 5.2 we have the corresponding tensor
product decomposition:

@F(K(O) @ K(2) @ K(3))

= 9K @ H-(K) ®H’,  (10.6)
RAKI@ K™ K@ K®)
= Re(Ki., K») Q Re(Kys, Kz)) @ Ro,  (10.7)
where
9 = 9:(K™®) Q s(K*), 1.8
R, = B®,(K®)® 1. (10.9)

We first investigate the continuous part RBr(K,.,
K../K.). We have

Lemma 10.2. Ry(K,., K,./K.) is not type I
(unless K, = {0}).

For the proof of this lemma, we use the following
known lemma.®®

Lemma 10.2. If a von Neumann algebra B on
9 is a factor of type I and if a unitary operator u,
having a unique discrete eigenvector ¥,, satisfies
uRu™ = R (ie, @ € R implies uQu™" € R and
vice versa), then ¥, is of the form ¥y ® ¥, in
the tensorial decomposition § = &, ® 9. in
Lemma 10.1. In particular, ¥, cannot be a
cyclic vector of R unless R = B(9) (and £, is
one-dimensional).

Since ¥(K.) is the cylic vector of B (K., K,./K.)

3¢ This lemma follows from Lemma, 4.2 and Lemma 4.1 of
H. Araki and J. 8. Woods, J. Math. Phys. 4, 637(1963).
Namely, uRu™ = R implies uR'u™! = (uRu™) = R’ and
the condition of Lemma 4.2 of H. Araki and J. 8. Woods is
satisfied. If Wo = ¥, @0, then |RYy = £:R¥es, from which

P2 must be one-dimensional if ¥, is a eyclic vector of R and
hence B = B(9).
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due to Lemma 9.1, we prove the Lemma 10.2 by
finding & unitary operator u, having the unique
discrete eigenvector ¥(K) and satisfying uR.(K,.,
K,./KJu™" = Rp(K,., K,./K.).

We define the following operator on K. :

a, = Q. @ (7(K2c; ch/Kc)

X alcU(ch; ch/Kc)*’ (10'10)
c(t) = cos ({1 + a,)}, (10.11)
s(t) = sosin (1 + o)t (10.12)

8 = [{1 + ¢(K2c§ ch/Kc)}P(ch)
+ {—1+4+ o(K..; Ki./K.)*}
X PKL N KNI + et (10.13)

Since s, is bounded, commutes with «,, % = s,, and
s; = 1, we see that c(f) and s(f) are bounded, com-
mute with «,, are Hermitian, satisfy the addition

laws s(t, + t2) = s(t)e(t) + s(t)ety), et + &) =

c(te(t) — s(t)s(ty), and commute with other
¢(') and s(t'). Furthermore,
¢(HK, C K,, l=1,2, (10.14)
S(t)K; C K3_l, l = ]., 2. (10.15)

Therefore, u(t) = c(t) + i) on L, = K. + iK,
is a one-parameter family of commuting unitary
operators, and the corresponding operator #(f) on
L. = K. @ BK. has the property

12<t)ch = chy

where H,, = K,, @ BK,..
Now the desired unitary operator on $,(K°) is
given by

(10.16)

T, = T, (10.17)

where the definition (6.17) is used. Since u(¢) has
continuous spectrum, u(t)® with n s 0 has con-
tinuous spectrum® and T, has the unique dis-
crete eigenvector ¥p(K.). By (7.15) and (10.16),
T.Re(K,; Koo/ KO)TT* = Rp(K,, K»/K®).
Therefore, T, satisfy the property required and this
completes the proof of Lemma 10.2.

We now investigate the discrete part. Let {f.}
be the orthonormal basis of K,; such that a.f, =
2. where A, > 0 and A\, may be the same for
different . Let ! = U(Ksi, Ki/Ko)fe Let Ko
be the space spanned by f,, K., be that spanned
by f. + A.fZ, and K, be that spanned by f, and f.
for each a. We have the decomposition

3 H. Araki and J. 8. Woods, J. Math. Phys. 4, 637
(1963), Lemma 4.1,
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K, = Eaj“’ K., (10.18)
K= Zf Ky, (10.19)
Ko = ;“’ K. (10.20)

Correspondingly we have the following decomposi-
tion®*:

(Ko = I;I@’ 9:(K.), (10.21)

Rr(Ky4, Ko/K,) = H®RF'(K1¢1, K,./K.,), (10.22)

where H® in (10.21) is the incomplete infinite
direct product® containing the infinite product of

vectors | [ ¥, (K.). The ][ R. for infinite number
of & is, in general, defined by

II°R.= v RB.® II®1y),
a a B*a

(15 is the unit operator in $), and the correspond-
ence of the right- and left-hand sides of (10.21) and
(10.22) is uniquely specified by the following
correspondence:

(10.23)

V(K = H® Ve(K.), (10.29)
Ur(f) = IJ® Ur(E.f), (10.25)
Velg) = I}® Ve(E.g) (10.26)

(E, is the projection on K,).
We now prove

Lemma 10.4. Re(K,., K../K,) is a factor of
type I for each a.

Proof: As is well-known, $,(K,) for two-dimen-
sional K. can be realized by

9:(K.) = LR

- {utat, o [ P < o),

(10.27)
Vr(Ko) = 77" exp —3[(@)° + (=2)3],  (10.28)
(Ur()¥)(@e, 25) = V(ah, 22)
X exp i(f, foza + (f, fi)2k],  (10.29)
(Ve()¥)(z, 27)
= ¥@. + (9, 1), 2% + (g, ).  (10.30)

We define a one-parameter family of unitary
operators U,{(p) by
% This decomposition can be proved trivially by an

argument similar to that before Lemma 2.4 in H. Araki
J. 8. Woods, J. Math. Phys. 4, 637(1963). rakd and
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(Ua(p)V)(2h, 23) = U(zh, 22 + pzh).  (10.3D)
We easily verify
[Uulp), Uplefa)] = [Ualp), Velefl)] =0, (10.32)
Udp)Urlcf)Ua(p) ™" = Uslef + pefa), (10.33)
Udp)Velcf)Ualp)™ = Velcfa — pefe). (10.34)
If we define
RIM
= {Uplcf)Vr(dfa + N df%);c, dreal}’”, (10.35)
RPN
= {Uslcfu — Mf)Ve(dfa);c, dreal}”’,  (10.36)
then we have
UadRS W U(p)" = RSN = p),
l=1,2 (10.37)

By Lemmas 5.1 and 5.2, $(K,) = Hr(K:.) &
$r(Ki. N K.), RP(0) = B($r(K1a) ® 1, and
R20) = 1 ® B(9-(Ki, N\ K,)). Hence R’ (0) is
a factor of type I and the same is true for B’ (N).
Since Rp(Kia, K:a/K.) = R (\.), this proves
Lemma 10.4.

We now need a criterion to tell us whether
or not [[® R, is type I when R, is type I. Such a
criterion is given by the following theorem.

Theorem 6. Let © = 9, ® H», O, be the in-
complete infinite direct product of $, containing

II8 ¥ouy Wou € Do, ol = 1, Do = 92 ® 94,
RP = B(9)) ® 1, R, be a factor on H,, By =
112 R®, and R = R, ® R,. Then R is type I if
and only if R, is type I and

Pl = Ao 8L, 9 < @ (10.39)

Gee., [[o d(@ou; D2, ©2) is absolutely convergent),
where
d(¥; 91, 92)

= sup (¥, & @ &) |[&][7 [|®:]]7".  (10.39)

For the proof of this theorem, we need three
lemmas.

Lemma 10.6. Let A, be bounded antilinear
operators from §; into 9% and []'® A, be their
tensor product transforming []*% &} into [ [,'$ ©3.
Then

o] - e

HUZIHIRO ARAKI

Proof: If we prove the case N = 2, then we obtain
the general case by associative law. Taking ¥ =
V@, ¥ € §in |4, ® 4| = sup [|(4: ®
A,)¥|[-[[][7", we have [|4; @ A,|| = [|4,(]-]|4.]].
On the other hand, ||4, ® 4.]| = |4, @ T|| X
[l1 ® TA,|| where T is any conjugation on $(T* =
1, Ti = —iT, || T¥]| = ||¥]]), 1 ® T4, maps $; @ 9,
into ©; ® 9 linearly, and then 4, @ T maps
O ® 9; into $ Q 9; antilinearly. Let ¥, be
an orthonormal basis for §; with 7%, = ¥,. Then
any ¥ € $! ® §2 has the expansion ¥ = 3., ¥ ®
¥, with [[¥* = 37, [[¥,"]]" and ||(4, @ T)¥|* =
200 14PN < {144 |[w|[". Hence, [|4, @ T <
[|[4,]]. Similarly, [[1 @ TA.|]| = ||TA.|] = ||4.]].
Therefore, [|4; ® 4,|] = ||4.]]-]]4.]].

Lemma 10.6.. Let = Hzﬁ? 9, 6 =9 R,
o =112 %, v=I[2v,¥ & H. Then

dw; 9", 9" = gd@z;@‘,,@?). (10.40)

Proof: (¥, &, ® ®,) = (:(P1,), D:2) defines
a vector x,(®;,) in 9} depending antilinearly on
&, and x;(®;,) = pi,(¥;)®,, defines an antilinear
operator from ) into $I. We have

”Piz” = sup I(¢121 Pi2q’ll)l ”q)lllrl H(I)m”—l
= d@’u@%@f)
Similarly we define p,(¥) from ' into $°. Ob-

viously, pi2(¥) = II§ ol,(¥:) and [|p|| = d(¥;
91, $7). From the previous lemma, we have (10.40).

Lemma 10.7. If © = §' Q 9° then, for any
given ¥ € §, there exists normalized ® & ',
[ =1, 2, such that

dv; ', 9 = (¥, ' ® &).  (10.41)

Proof: We consider the operator p,.(¥) introduced
in the proof of the Lemma 10.6. We define a pos-
itive-semidefinite Hermitian form K on $' by
(0121, p12®]) = (®], K®,). We see that K is a
bounded operator with ||K|| = [|p2||*. Furthermore,
for any complete set ®, in ', I = 1, 2, we have

tr K = 20 |(@h, pu®l)® = |[¥]]* < .
Brjia
Hence K is in the trace class and has a discrete
spectral decomposition

K = X \P,, (10.42)

where A, > 0 has no accumulation point except
possibly at 0. Let &' be a unit eigenvector of K
belonging to A, = max A, and & = A 1p,(¥)P.
We see that [|®']] = 1, (¥, &' ® &°) = A} and
[lo12(¥)|| = A}, which implies (10.41).
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Before proceeding to the proof of Theorem 5,
we state a few basic properties of the incomplete
infinite direet product. Let x,, be an orthonormal
basis of $, containing ¥,, as its member. Then

Xy = H® Xvaa (1043)

«

with only finite number of v, # 0, constitutes an
orthonormal basis for the incomplete infinite direct
product [J® $. containing ¥, = [ ¥,, (Lemma
4.1.4 of reference 9). If 2., | T[] — 1] < =,
and X, |(¥'Y, ¥,,) — 1] < o, then [T ¥** is
in the space with the expansion coefficient in the
basis (10.43) given by J]. Gtuey ). If U is
a unitary operator on £,, and if

T = @oa, UV < ®,  (10.44)
then U = ][] U. can be defined by Ux, =
II® U.x,.. and is unitary. If the index set {a} is
divided into two parts I and J, and if 9, and
9, are incomplete infinite direct produets of 9.,
o« € Iand 9., a € J, containing ¥or = [[%; Yo,
and ¥y, = J[%es Voo, respectively, then § =
$: Q@ Ds, Yo = ¥or Q Yo, and x) = X011 @ X1y
where x(r = H%er Xraa 80d Xy =
Finally,

@
acg Xraa-

B®) = I]®B®.) (10.45)

for any incomplete infinite direct product $ =
IIE 9.

Proof of Theorem &: First we prove that K is a
factor. Define R® = 1 ® R(92), R® = [[® R,
R® = R ® R{®. Obviously, R commutes with
R™. By (10.45), R, V R® = B(£,) and hence
R V R® = B($). Therefore R is a factor.

Next we show that, if Ristype I, Do (1 — d(Woa,
9., ) = o leads to a contradiction. If R is
type I, then § = ‘bl &® ‘8:92: R = B(‘bl) ® 1,
R =1 B($ for some ' and H°. Consider a
vector ¥ € D of the form ¥ = ¥' Q) ¥, ||[¥}]| =
%) = 1, ¥ € §'. We prove that

(‘I’v ¢ ® Xlrl) =0 (1046)
for all ||®|] = 1, @ € §,, and the orthonormal
basis x;,) of $, = 1I® D. given in (10.43). This,
of course, is a contradiction to ¥ = 0, Let I be

any finite set of « such that », = 0 for a given
set {»,}. Let

23
I

I

L®II®1.® [[°RY,

a€J at&d

ay _ ® p) ®
R‘Y RG ® H RO‘ ® ‘g la,

a€J
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@ _ pr @ pl2) ®
EY = R:® II°RY @ II° 1.,

where J is the complement index set of I. We see
that (RS, R{") is a factorization of B = B($') ® 1
and (R, R{?) is a factorization of R = 1 ®) B(H”).
Since R;" is type I for a finite set I, we have further
decomposition: " = $; ® ;, & = $; ® 6
R = B(§;)®1,R;” = 1® B(9). By comparing
with the decomposition, = 9§, & O, & =
H§€I @a} '@1 = ®6®H¢EJ ® ‘@a, R?) A% R?’ =
1 @ B($:), we see the unitary equivalence $, =
9, ® 97, 6 = $: ® 9. By applying definition
(10.39) and the Lemma 10.6, we have

(¥, ® @)ﬂ-})l = d(® ®Xx»);3:31»5§2)
= d(@ ® gXl’au;‘bi”@i)

X T dWou; &4, ©2).

a€l

(10.47)

The first factor on the right-hand side is not larger
than 1. If 3. (1 — d(¥o,; DL, $2)) diverges, then
Il. d@o.; 9.3 = 0 [note that 0 < d(¥oo;
92, H2) = 1), and therefore, by suitably choosing
I, the right-hand side of (10.47) can be made
smaller than any given e¢ > 0. Therefore we have
(10.45), which is a contradiction to ¥ # 0. Hence,
if B is type I, (10.38) holds.

Now assume (10.38). According to the Lemma
10.7, we consider unit vectors &/, [ = 1, 2 such that

(‘I,()ay éix ® (bza) = d(‘I’On;\@Ia) @i)'

By (10.38), JI® (#! ® #2) is a unit vector in
9;. Let ©, be the incomplete infinite direct product
II® $! containing J[® ®!. Then we have the
decomposition $, = &, Q ; and, due to (10.45),
Ry, = B(§;) ® 1. Namely, R, is type L.

Finally, if R is type I, then we have (10.38),
and hence R, is type I. Because the pair (B,, R,)
is a factorization of B = B($') & 1, R, must also
be a factor of type L*® Conversely, if R, is type I
and (10.38) holds, then R, is also type I and hence
R is type I. This completes the proof of Theorem 5.

Proof of Theorems 4 and 4': We now apply the
Theorem 5 to the tensorial decomposition (10.6),
(10.7), (10.21), and (10.22), where $r(K.,) and
Rp(Ky., K, is taken to be 9., and R, and &’
and R, are considered as one member in the infinite
direet product over a. Other members of the infinite
direct product over a are, of course, $r(K,) and
Rp(Kia, K:o/K.). The decomposition . @ H2
for & is given by (10.8) and (10.9), and the de-
composition for (K ,) is given by Lemma 10.4 as
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$r(Ko) = UsAa) ' (Dr(K:a)
R Or(Kia N KL).  (10.48)

We first calculate d(¥,.; i, $2) which is
given fOI‘ @F(Ka) by d(Ua(Aa)\I,F(Ka); @F(Kla))
Sr(Ki, N K.)). In the realization (10.27) of
Or(Kia), Or(Kia) & (¥(@)); [ [¥) dz) < =}
and the operator K introduced in the proof of the
Lemma 10.7 is given by an integral operator with
the following kernel function:

K@, a) = [ (V0¥ E D@, )

X (Uah)¥r(K ) (@iy)* dy
wHexp {—1(1 + D@ + 2P

+ %Aixlx{} .

(10.49)
By using the formula

7 *y}(cosh 1) exp {—%(cosh 20)(=* + ¥

+ 2y sinh 2¢}y = Z (tanh 9'L@L.G)*,  (10.50)

f.@) = YiE2n) H,(v ) exp (—hy2®),  (10.51)
we obtain

2\3\ 1
R

(LD} = 1Y e
X Zo <(1 + ) ¥ 1) f@)fa)*.  (10.52)

Since {f.} is an orthonormal basis for $.(K,.),
we have

AU A)¥(K.o); Dr(Kia), §r(Kie N K))

= fig|p = (AEO NN

) (10.53)

Now applying the Theorem 5 to the present
situation, the von Neumann algebra Er(K,, K,/K)

HUZIHIRO ARAKI

is type L if and only if Re(K,., K,./K,) istypel, and
2A-BI+A+FNN) <= (1059

Due to the Lemma 10.2, Rz(K,., K../K.) is type I
if and only if K, = 0, and (10.54) holds if and
only if D>, A2 < . Therefore, we have type I
if and only if «(K}, K!/K‘®) is in the trace class.
This completes the proof of Theorem 4’, and hence
that of Theorem 4.

Theorem 6. Rp(K,, K,/K) is infinite type.

Proof: We prove that the factor Re(K! @ K,
K; D K®/K® @ K® @ K®) is infinite type.
Let f € K! @ K® and let E(A) for a Borel set A
be the spectral projection of U:(\){(Us(Af) =
[ ™ dE(t)). There exists g € K} @ K such that
a = (f, g) # 0. For such g, VQg)E(A)V(A\g)™* =
E(A + 2a). For any interval A = [b, ¢), E(4) is
nonzero because > o._. E(A + n(c — b)) = 1.
For A = (— o, b) and Aa > 0, E(A) = E(A + \a),
E(A) < E(A 4+ Aa). Hence E(A) must have the
relative dimension . Hence Rp(K,, K,/K) is
infinite type.

Because of Theorem 6, Rr(K,, K,/K) is either
type Il. or III. if it is not type I. The discrete
part Bp(K,s, K;i/K,;) can be mapped unitarily to
an example of von Neuman,® and whether this
algebra is type IT. or IIl. can be decided by seeing
whether a certain measure is equivalent to an
invariant measure or not. We will not pursue this
problem any further in this paper. The unitary
mapping to an example of von Neumann just
mentioned also gives another proof of the duality
equation for the discrete part Bp(K,4, Kuu/K,).
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A method for the construction of explicit representations of unitary Hilbert-space operators in the
particle-number representation is presented and illustrated by application to several examples.

1. INTRODUCTION

T is true that methods for the construction of
explicit representations of symmetry operators
are already available in field theory. Indeed, there
is a well-known method for constructing the gener-
ator of any continuous transformation in terms of
field operators when it is defined in terms of its
action on field components (and when the Lagrang-
ian and variations of coordinates are known)'; and
Berger, Foldy, and Osborn have given a method
which is more general in being applicable also to
discrete transformations.” However, these methods
lead only indirectly to representations in terms of
annihilation and creation operators of the field ex-
pansions (“A0’s” and “CO’s” for short); and we
find, in fact, that representations of discrete opera-
tors have usually been constructed by simpler
ad hoc methods.?

The purpose of the present paper is to describe a
convenient method for the construction of repre-
sentations of both continuous and discrete unitary
Hilbert-space operators directly in terms of AO’s
and CO’s. The method is useful when (1) the trans-
formations are known in terms of their action on
the AQ’s or CO’s (or, equivalently, on one-particle
states), and (2) the AO’s and CO’s satisfy the
customary commutation or anticommutation re-
" * Now at Poulter Laboratories, Stanford Research Insti-
tute, Menlo Park, California.

t Present address: Department of Physics, University of
Nebraska, Lincoln, Nebraska.

1 See, e.g., P. Roman, Theory of Elementary Particles
(Interscience Publishers, Inc., New York 1961), 2nd ed., pp.
220223,

2 J. M. Berger, L. L. Foldy, and R. K. Osborn, Phys, Rev.
87, 1061 (1952). These authors have stated their Theorem I
for anticommuting fields, but both theorem and proof are
equally valid for commuting fields,

3 R. G. Sachs, Phys. Rev. 87, 1100 (1952); L. Wolfenstein
and D. G. Ravenhall, Phys. Rev. 88, 279 (1952); 8. Watanabe,
Rev. Mod. Phys. 27, 40 (1955); B. P. Nigram and L. L.
Foldy, Phys. Rev. 102, 1410 (1956); P. G. Federbush and M.
T. Grisaru, Nuovo Cimento 9, 890 (1958); E. G. C. Sudarshan,
Proc. Ind. Acad. Sci. 49, 66 (1959); F. A. Kaempffer, Can. J.

Phys. 39, 22 (1961); K. H. Mariwalla, Rev. Mod. Phys. 34,
215 (1962).

lations®'®

(1.1)

The present method thus enjoys the same generality
as that of reference 2; however, it deals directly
with the AO’s and CO’s, which have a more im-
mediate physical interpretation than the field
operators.

[aay aj;]a- = aap, [aau aﬂ]a = [azy aﬁ]— = 0

2. METHOD

Unitary transformations are generally divided into
two types, continuous and discrete. A continuous
transformation acting on the AQ’s can be written
@ = D5 Capls, Where the ¢, are parameters of the
transformation. A discrete (or discontinuous) trans-
formation exchanges pairs of AQ’s in such a way
that its double application yields only the factor &=1;
that is, a. — nas — Za., where 9 is a unimodular
phase factor. If we let A denote a column matrix
of AO’s a, which (with their Hermitian conjugates)
satisfy Egs. (1.1),

2.1

then a unitary transformation of either type can
be defined by means of a unitary matrix U of com-
plex numbers such that

af

A— A= |ab

UA. 2.2

* The subscripts « and 8 refer to a complete set of dynamic
and intrinsic variables such as momentum, spin, isospin, and
baryon number, with each index generally standing for more
than one variable.

§ We shall not follow the conventional practice of using a’s
and b’s to denote the A0’s of particles and antiparticles,
respectively, but rather use the letter a for both, with indices
1 and 2, respectively.
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Theorem.® If a matrix ® is known such that
(2.3)

then it is possible to construct a unitary Hilbert-
space operator U which performs the transformation
according to

exp (—i®) = U,

Ua, U™

UAU' = |Ua,U'| = A", (2.4

The construction is given by

U =¢?, (2.5)

where’
B = A'gA. (2.6)

Proof: Upon expanding the exponentials we find
that

©

UAU™ = " 4e™ " = }::7 B, Al,, (2.7
=0 &
where
[B) A]n = [Br [By A]n—l]— fOI' n # 0’ (2.8)
and
[B, A], = A.

Using the definition (2.6) for B, we find the ath
component of the column [B, A)_ to be
[B, a.]. = BZ ®sy[a%ay, a.]
ké
= ﬁz (Bﬂ‘y[(a’sa‘vaa + a*ﬁsaaa-y)
Y

— (aea%a, F a%a.a,)] = — 2 ®Buya,,  (2.9)
Y

where we have used the commutation (anticommuta-
tion) relations, corresponding to the upper (lower)

signs. Thus [B, A], = —®A4, from which we obtain
by induction that

[B, 4], = (—®)4. (2.10)
Substituting this result into (2.7), we find
UAU™ = ¢'PA¢*?
- > ;‘,B) A= exp (—i®)A. (2.11)
n=0 .

Equation (2.11) shows that the unitary trans-
formation which mixes or permutes the AQ’s of 4
corresponds to a Hilbert-space operator constructed
from the same set of AO’s asis 4.

6 Cf. Theorem I of reference 2.
? We define At = (a/*, a* ---).
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Under any given transformation the operators a,
fall naturally into subsets such that the transforma-
tion leads to mixing only within subsets—not be-
tween subsets. This property is useful because it
allows us to construct the total unitary operator U
as a product of partial unitary operators acting on
these subsets.® That is, we can write

U=J1U, = IIe",
P P

where U, = exp (¢B,) is the partial unitary operator
which transforms the AO’s of the pth subset; from
(2.6), (2.3), and (2.2), we find

B, = A8,4,,

(2.12)

(2.13)
provided

exp (—i®,) = U,, where 4,— A, = w4, (2.14)

under the given transformation, and A, is the
column formed from the AQ’s of the pth subset.
The proof of (2.12) follows easily from the observa-
tion that the AO’s in any A, commute with all B,
for which p # 7. Since the operators B, also commute
with one another, (2.12) can be rewritten as

U =¢®, where B= ). B,. (2.15)
p

In many applications, the matrices U, and ®, turn

out to be the same for each p, so that the index on

these matrices is superfluous.

For discrete transformations, which permute pairs
of AO’s, it is generally necessary to determine the
matrix ®, from a known matrix U,. But this is
easily done, since in this case U, is a 2 X 2 unitary
matrix which can always be written as an exponential
function of a Hermitian matrix. Thus we set

U, = exp (—i®,) = exp [{(A9 + ub-¢)]
= ¢"N(d cos u + tb-ésin p), (2.16)
where 4 is the 2 X 2 identity, the o; (¢ = 1, 2, 3)

are Pauli matrices, and A, ¢ and b; are real param-
eters satisfying b+b = 1. Explicitly, the matrices
of (2.16) are

(by + 7by) sin p

cos u — by sin u
(2.17a)

cos p + thysin u

1

2, = e.-xl
(—b, + 4by) sin

and
A+ wbs #(bl - ibz)

#(bl + ibz) A e [J.b3

® See, e.g., L. Wolfenstein and D. G. Ravenhall, Phys.
Rev. 88, 279 (1952).

®, = — . (2.17b)
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Comparison of the known matrix U, with the cor-
responding matrix of (2.17) now permits one to
determine the allowed values of the parameters’ and
hence the matrix ®,.

3. APPLICATIONS

A. Isorotation of an isovector field

This is an example of a continuous operator,
applicable to the pion field, in which ® is known.
Let us define™

Pr1 [13"%
©Or = |[@x2 a’nd Ak = |8x1} , (3'1)
Pr3 Qy3

where the AO’s ay; are those which occur in the corre-
sponding Hermitian fields ¢,,;. These Cartesian com-
ponents ay; are defined by (ax, F 7ax.)/ V2 = a,.
and axs = axo, where the latter are AOQ’s for »~
and 7° mesons, respectively; a similar definition
holds for the ¢,;. An isorotation through the angle
|| about the direction of « is then given by

©r = exp (—ia-d)e,, or A = exp (—ia®) AL, (3.2)

where the ¢, are 3 X 3 “angular momentum”
matrices in the Cartesian representation.” For sim-
plicity, we shall take o, = a3 = 0. We then have,
according to (3.2) and (2.14),

0 0 ¢
@B = ad, =a,] 0 0 0)- (3.3)
—1 0 0
From (2.13),
By = A®y Ay = tap(af10xs — afsax1)
= (i/ VDa(0k axo + at-axo
— afoOxs — afoax);  (3.4)

and U = ¢'®, with B = ), By, according to (2.15).
B.

This is a discrete transformation for which
U? = =1; the upper sign leads to the “real parity

Space inversion of a Dirac field

® Among the allowed values, the best choice is generally
that for which the matrix (2.17b), and hence the operator B,
is simplest; this occurs, for example, when that matrix has
two zero elements. Note that the nonuniqueness of the
operator B is not reflected in the action of U. That is, the
effect of U on the AQ’s (and hence on the CO’s) is unique, by
the above theorem; the uniqueness on states then follows from
expressing the latter as products of CO’s acting on the vacuum,
gince the vacuum is invariant under any U of the form (2.5)
and (2.6).

10 Reference 1, p. 501.

it Reference 1, pp. 427 and 429.
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class’” (with phase factor 9 = =1), and the
lower sign to the “imaginary parity class” (with
phase factor n; = 7). We consider first the real
class which can be defined on particle and anti-
particle AQ’s, respectively, by®'**

Ouxs1 = Ne0ekor A0NAd  Gug,, — T NRA ke ,2- (3.5)
Letting
Ao = |™) and Ay, = |"?|,  (3.6)
a—ksl a—kaZ
we get
0 —
‘u«ksl = K a'nd cu'kGZ = 0 7= N (3.7)
Nr 0 Mg O

Referring to Egs. (2.17), we choose for ., the
parameters u = —3w = —\, b, = b, = 0, and

b: = nr(= =1); and the same for U,,,, except that

A = —3m. Thus we get, from (2.17),
-1 1

(Bkll = g & alnd (Bk|2 = 221: [ nR] ; (3'8)
1 —1 e 1

from (2.13),
Bkan = %W[(—l)n(aianakan + a-”—‘kana—kan)
+ nR(a?{‘ana—kan + afkanaksn)] (3-9)

forn = 1 or2;and B = J_4,. By, from (2.15)."®
For the imaginary parity class, space inversion
is defined by

a*kln g nla—knn (3-10)
for both particle and antiparticle AO’s. Here we find
0 771] .

7 0

(uksn = (3.11)

choosing the parameters in (2.17) to be® p = 1r,
A=b=bs = 0,and by = —in,(= £1), we get

Bun =5 {0 ’7’] ; (3.12)
7 0
and
B = kzl Bkm = kZ:’ %Tiﬂl(atan ~kan
+ afksnakcn)' (3’13)

2 R. E. Marshak and E. C. G. Sudarshan, Introduction to
Elementary Particle Physics (Interscience Publishers, Inc.,
New York, 1961), p. 53.

13 The prime indicates summation over only half of
k space (say, ks > 0). This restriction arises because the
permuted indices happen to be k and —k, so that a summation
over all of k space would include each term twice.
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Equations (3.9) and (3.13) show that the space-
mversion operators for the two parity classes are
quite distinct.” Because of the particle-number-
operator terms which appear in (3.9), we see that
these two operators will behave differently under
particle-antiparticle conjugation.'®

C. R inversion of baryon fields

As g final example, we shall construct the operator
for an R inversion'® of the baryon fields. (The corre-
sponding operator for the meson fields is quite
similar, and will not be worked out here.) In this
example, we shall change our notation and denote
the AO’s by the symbols of the particles annijhilated;
the equation Af,, = #x. 4y defining this trans-
formation can then be written out explicitly as

277 [o01 Tap

P 10 o

= 01 n

no_ 10 o ) (3.19)
=" 01 z*

z* 10 ="

z° Lof =
LAl L 0 1iLa

The indices k and s have been suppressed in (3.14);
the particle symbols take the place of subscripts
denoting hypercharge and the third component of

1 Note that the explicit representation of the space-
inversion operator given in reference 12 is valid only for the
real parity class.

15 Cf., for example, B. P. Nigam and L. L. Foldy, Phys.
Rev. 102, 1410 (1956).

16 J, J. Sakurai, Phys. Rev. Letters 7, 426 (1961); M.
Gell-Mann, California Institute of Technology Synchrotron
Laboratory Rept. CTSL-20 (unpublished).

P. H. MORAVEK AND D. W. JOSEPH

isospin, which are reversed by this transformation.
The column Ay, has been ordered in such a way
that qly,; consists siraply of 2 X 2 submatrices
along the diagonal, so that (2.17) can be applied
as before to yield

-1 1
1 -1
-1 1

1 -1 - (3.15)

[V

-1 1
1 -1

L 0 0
From this we obtain

Byn = dml(—p*p + p*E" + E™p
+@—on 5 > E
+@—2" 2 - 2 )., (3.18)

where the last two terms are obtained from the first
by means of the indicated substitutions, and the
AQ’s and CO’s each carry the indices k and s.
The operator By,. which acts on the antibaryon
column Ay,, is obtained from (3.16) by substituting
antiparticle AO’s and CO’s for all particle AQ’s
and CO’s; and, finally, substitution of the operator
B = > ;.. Bu., into (2.15) yields the desired unitary
operator.

P S ™
— ET*E)
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A modified Langevin equation for the description of Brownian motion is shown to give results
equivalent to those of the Langevin equation in some physical situations. The Smoluchowski equa~
tion for the probability density of the displacement of a Brownian particle is derived from the modlﬁeq
Langevin equation with the aid of assumptions weaker than those needed to derive the Slr}o_luchowskl
equation from the ordinary Langevin equation. Sufficient conditions for the applicability of the
modified Langevin equation to the calculation of configuration-space averages are obtained. Then
the modified Langevin equation is applied to three simple systems, and the results are compared with

those of the Langevin equation.

INTRODUCTION

HE starting point for investigations into the
theory of the Brownian motion of a particle
immersed in a fiuid is usually the Langevin equation

o= —pu + AQY) + K@), (1)

where r is the position and u the velocity of the
particle. The effect of the medium is assumed to be
separable into two parts, a dynamical friction, —8u,
and a rapidly fluctuating term, A(f), which is
assumed to be independent of u. The last term in
the equation represents the acceleration caused by
any fields of force acting on the particle. The
fluctuating term has only statistically defined
properties. A convenient formulation of its properties
was given by Chandrasekhar.! Let At be any time
which is long compared with the times of fluctuation
of A(t). If we let

t+ At
Ba) = [ A@ &,
then the probability density for the values of B(A?) is

@)

where ¢ = BkT/m. The mass of the particle is m,
and k is Boltzmann’s constant.

Chandrasekhar’ also proved the following useful
lemma. Let

WB(A)] = (4mgat)™ exp (— [B(AD)|*/4¢Ad),

R= [ y0a® a

Then the probability density for the values of R is

* National Science Foundation Graduate Fellow.

! 8. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).

* A. Westgren, Arkiv Mat. Astron. Fys. 11, Nos. 8 and
14 (1916); and 13, No. 14 (1918).

W) = (e [ w0 de)

x o (R0 [ VO &)

If we arbitrarily remove the i term from the
Langevin equation we obtain the modified Langevin
equation

0= —pu+ A®®) + K@)

or
u = BA(t) + BTK(@). €]

Equation (4) can only apply in a coarse-grained
sense, since it implies that the particle is at all
instants of time moving with the friction-limited
velocity consistant with its instantaneous forces.
Equation (4) is not valid for times of the order of
or less than 87, since it gives results which are
qualitatively different from those of the (physically
reasonable) Langevin equation. However, for times
much larger than 87", the predictions of this equation
are often the same as those of the Langevin equation
for certain types of external fields K. The modified
Langevin equation has the advantage that, since
it is a first-order stochastic differential equation,
it is easier to solve than the Langevin equation,
which is a second-order stochastic differential equa-
tion or the various second-order partial differential
equations which have been used to deseribe Brownian
motion. The purpose of this article is to derive
conditions for the validity of the modified Langevin
equation.

DERIVATION OF THE SMOLUCHOWSKI EQUATION
FROM THE MODIFIED LANGEVIN EQUATION

Let us assume that there is a time At which is
both long compared with the time of fluctuation

1367
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of A(t) and short compared with the times during
which the position of the particle changes appre-
ciably. When Eq. (4) is integrated from time ¢, to
to + Ay the result is

Ar = r{t, + A — r{ty)

= B7'B(A) + BT'K[r(t)]At + 0(A)°,  (5)
where we have made use of the fact that
Kir(®] — K[r(t)] = O(AH) for &, <t < t, + AL

We make use of Eq. (5) and Eq. (2) to calculate

the probability density that a particle originally

at position r at time ¢ will be at position r + Ar

at time ¢ + AL

¥(r; A = B'(4rgA) ™ exp (—
Since At is long compared with the fluctuations

of A(t) we expect the following equation fo be valid:

Wi, t + Af)

[BAr — KAt[*/4qAt).

= [ W& = ar, 0wt — ar; a0 atan,  (6)
where W(r, {) is the probability density that the
particle is at position r at time ¢.

When each of the factors in Eq. (6) is expanded
in a Taylor series, we obtain

Wi, ) + vy At + 0(aY®

-/.1. f {reo - ?;aT-:A"

+%Z_; arz W ary + ;a ar, A bry + }
'{xf’(r Ar) — ia'pm + 3 SZ 3y (ar)?
' t=1 67', 69"; '
+§£$mm+mdwwmmm,

@)

where 7, r;, and r; are the components of the
vector r. If we define

ar = [[[ arovte; ar) agan),
@ = [[] et ) e,

(Ar; Ar;) = f f Ar; Ar;y(r; Ar) d(Ar),

H. C. ANDERSEN AND I.
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Eq. (7) can be simplified to

3
aWAt—l—O(At) = —-}: 9

=1 OF;

(W(ar)

3

+ 3 Zar (wiard) + Ea .

i=1 B i<j

X (W{ar;Ar;)) + O(Ar;Ar;Ary)). (8)
The averages are
(ar) = BT'K AL,
(Ar?y = 2¢87*At 4 O(AY?,
(&r,Ar;)y = O(AD,

{Ar;Ar;Ar) = O(Af)®  (for any choice of 7, 7, k).

Equation (8) then becomes

ﬂ At + O(AD® = —B7TAIV -(WK) + ¢87 ALV W,

Dividing this equation by A¢, and neglecting terms
of order At, we obtain

8T'KW),
which is the Smoluchowski equation.

The assumptions made in this derivation are the
same as those made in the derivation' of the
phase-space Fokker-Planck equation from the
Langevin equation. With the aid of additional
assumptions about K(r) and about the velocity
distribution of the Brownian particle, the Smolu-
chowski equation can be derived' from the Fokker—
Planck equation, for times much larger than §7'.
Thus, whenever the Smoluchowski equation follows
from the Langevin equation, it also follows from
the modified Langevin equation. This leads to the
conjecture that the modified Langevin equation is
at least as valid as Smoluchowski’s equation. In faet,
for several simple systems, such as the free particle
and the particle in a centrifugal or harmonie potential
(see below), the modified Langevin equation and
the Smoeluchowski equation give identical results.

SUFFICIENT CONDITIONS FOR THE VALIDITY
OF THE MODIFIED LANGEVIN EQUATION

When solving a stochastic differential equation
such as the Langevin Eq. (1) or the modified
Langevin Eq. (4) for a single particle, one assumes
that A(¢) is a definite function of time and solves
the equation for r(f) as an initial-value problem in
the usual manner. The answer will involve A(Y),
and from the statistical properties of A(f) one
calculates the statistical properties of r(¢). This is
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equivalent to imagining an ensemble of particles,
each of which has the same initial conditions.
The functions A(f) are “‘distributed” in some manner
in the ensemble, and each member of the ensemble
has a definite A(¢) acting upon it.

Let us consider two ensembles, L and M. L
consists of particles Ly, L,, --- Ly, and M consists
of particles M, M, - - - My ,where N is an extremely
large number. Let each of them have an A(f)
assigned to it such that L, and M, have A,(t),
L, and M, have A,(f), --- etc. Let each of the
particles in the L ensemble start at { = 0 at point
r, with velocity u, and then move according to
Langevin’s equation. Let each of the particles in
the M ensemble start at ¢ = O at the point r, and
move according to the modified Langevin equation.
(We cannot specifly the initial velocities for the
particles in the M ensemble because the modified
Langevin equation is a first-order differential
equation.) Thus, the equation of motion of particle
L; is

= —pu+ A() + K@),
while the equation of motion of particle M, is
u=gT"A)+ 8K, i=1,2---N.

Particles L; and M, will, of course, not follow
the same trajectory, even though they both have
the same A;(t) acting on them. Their trajectories
will differ by

yi(t) = r2.(t) — ta.(8), i=1,2,+---N.

This defines a new random variable y(¢), whose
statistical properties are described by the combined
ensemble.

Suppose the ensemble averages (|y(f)|)., and
{y*(1))}, are small compared with distances which
we wish to measure. This would imply that at
all times, for almost all 7,

rLi(t) = rM.‘(t)

to within experimental accuracy. If we wanted to
calculate the ensemble average of any funetion of r,
such as r — 1y or (r — {(r),.)%, the two ensembles
would give the same result to within experimental
accuracy. This implies that the Langevin equation
and the modified Langevin equation are equivalent,
as far as a description of the positions of the particles
is concerned. Thus, to demonstrate the equivalence
of the Langevin and modified Langevin equations
we need only demonstrate that (ly()|)., and
{y ()}, are small.

For simplicity in the following discussion let us

i=1,2 +--N,
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just consider the case of one-dimensional motion.
Let z;,(t) be the position of particle L;, and let
zx,(8) be that of M,. The equation for zy, is

Er, = —Bir, + A + K(zw), )
subject to the conditions that
z2.,00) = o and #.,(0) = uo.
The equation for zy, is
u, = 87 A + BT K(wul), (10)

subject to the condition that
r M,-(O) == Tg.

We define y; = z., — Zu, (From this point on
we shall omit use of the subseript ¢ since it will
never be necessary to distinguish between two
members of the ensemble.)

Equation (9) can be rewritten in the form

e P (d/dt)(e s) = AQD) + K(zv).
Integration of this equation twice results in
wa®) = 67 [ (1= eONAQ + Klau®) de
+ 87 uo(l — ) + o,
Equation (10) can be immediately integrated to give
oul) = 87 [ (A0 + Klzu®)D &t + 2.
From these two expressions we see that

v = 220 — 2t = 87 [ (Kl

t

— Klu®D dt — 87 | ePR(AP

+ Klz.@®D dt + 87'uo(l — 7). (1n

We make use of the mean-value theorem to write
Klz.(®] — Klzx®] = () — zu@)K [(®)],

where z(¢) is between z,(¢) and z4(¢) and K'(z)
denotes the first derivative of K(z). Equation (11)
becomes

v = 67 [ REOW© &~ 57 [ e
X (A® + Klzo@) di + g7u(l — ™). (12)

This equation may be written in the simple form

y() = B f K'BOWE® & + S0,  (13)



1370
where
St = - , e PUTRAWB + Kl ®)]) dt

+ B7huo(l — ™).

Equation (13) is an integral equation for y(¥).
The solution of Eq. (13) is

(14)

v = 50 + 6" [ EKEEISE

x e (5 [ Kealan): a9

Using this result the statistical properties of y(f)
may be determined from those of S(¢).
S(¢) is the sum of three terms. The first term,

{

Su(t) = =87 | ePUTPAW dt,

is a random variable whose probability density
may be calculated with the aid of Eq. (3). The
distribution is Gaussian with a mean of zero and
a variance of (kT/mB8°)(1 — ¢ **"), which is small
for most physical situations. For example, in the
experiments by Westgren,” kT/mg® is about
107" em®.
The second term in S(%),

50 = —8" [ K@l &,

is also a random variable. Let us assume that in
the physical situation under consideration, K(z)
is bounded; ie. [K(z)] < P for all x of physical
interest. In this case,

1S:(0] < 8P f PP g < P,
1]

and [S;(#)| is bounded uniformly in time by an

amount which in most physical situations is much

smaller than (|8,|)... We shall neglect this term.
The third term in S(z),

85(t) = Buo(1 — &),

is also small. When w, is a thermal velocity, S; is
of the same order of magnitude as S,.

S() is then a random variable with a mean of
8 'uo(1 — ¢™%) and a variance of (kT /mB°)(1 — e"***).
We may now investigate the statistical properties
of y(f) in various cases.

Case I. If K'(z) = 0 for all z, i.e., if the external
force on the particle is independent of position,
Eq. (15) states that y{{) = 8(f). Thus, y() has
a Gaussian distribution with small mean and

H. C. ANDERSEN AND 1.
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variance. We expect, therefore, that the Langevin
and modified Langevin equations are equivalent
in this case.

Case II. Let us assume that [K'(z)| is bounded
by R, a constant. Then

D < (18O + 8RS
x [ o R~ 9] & < (SODw

where we have used the fact that (S()|)s.. >
(I8(#)[Yay for ¢t > £. Also used twice is the theorem
that

<§fg]>3v S fm3X<Igl>8"!

where f and g are any two random variables and
fmax 18 the maximum value of [f].

When FEq. (15) is squared, an expression for
y*(f) is obtained. From this it is easily shown that
@ )er < (S°W))an(d + 7).

For t < BR™, {Jy@®Da and (1)), are small,
and for such times we should expect Egs. (1) and
(4) to be equivalent. For larger times, these averages
may increase indefinitely. An example of such a
deviation of the results of the two equations is
given below in the centrifugal potential problem.
We note that solutions of the stochastic equations
for ¢ > BR™" are rarely of physical interest.

Case III. Suppose K'(z) is bounded and less
than a negative constant, i.e.,

—-R<K'@ < -@<0 (16)

for all z of physical interest. B and @ are positive
numbers. This implies that

v Dav < (SO Daw + BRSO Vav
X f ‘ exp [—87'Q(t — Bl dt < (St (1 + RQ™).

Similarly it can be shown that

O < (SOl + RQ™Y.
If (1 + RSO and (1 + RQT)HS' @)L,

are small compared with measurable distances,
(Jy®1)se and (H*(£))}, will be small for all times.
The above conditions (16) on K'(X) imply that
there is one minimum of potential energy. An
example of such a case is given below in the harmonic-
oseillator problem.

We have demonstrated that if the external
force and the space derivative of the external
force on a Brownian particle are bounded and if
these bounds satisfy certain numerical require-
ments, then for t < SR}, the Langevin and modified
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Langevin equations are equivalent for the calculation
of averages over the positions of the particles.
If, in addition, the derivative of the force is always
less than a negative constant, the equivalence holds
for all times.

APPLICATION OF THE MODIFIED LANGEVIN
EQUATION TO SIMPLE SYSTEMS

The Free Particle

The modified Langevin equation for the free
particle is

u = 8A(),
which can be integrated immediately to give

r = Bf AQ® & + 1o,

Applying Eq. (3), with ¢ = 87!, we see that

W, t;10) = (8°/4wq))’ exp (—6° Ir — ro[*/4g).
If we let D = ¢/8° = kT/m8, this becomes
W, t;10) = (4rDf) P exp (—|r — 1,’/4DY), (17)

which is identical to the result' of the Langevin
equation for ¢ > g7'.
The Smoluchowski equation for this problem is

aW/ot = B qV*W,
which is satisfied identically by Eq. (17).

The Harmonic Oscillator

The modified Langevin equation for a harmonie
oscillator with frequency  is (for one dimension)

&= BTAW) — B Wz,
the solution of which is

Iz = xoe——mu/ﬂ + B-l e~w’(£—£)/ﬂA(E) dE
0
Use of Eq. (3) in its one-dimensional form gives

2
mow

e
2rkT(1 — e‘““"’))

mo’(x — xoe_'"”/ﬂf)‘
KT — & 2 /%)

Equation (18) is a Gaussian for which

Wiz, t; ;) = <

X exp <— (18)

<x>av = xoe_"”"g
and
@ = (@)% + GT/me’)(1 — &%),
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The Langevin equation also predicts' a Gaussian
for which

(@)aw = zoe™""*[cosh (8,1/2) + BB sinh (8,¢/2)]
+ 281 "ue™?/? sinh (8,¢/2)
@") = (@) + ET/mo”)[1 — (28,6
X sinh® (8,4/2) + B;'8sinh (8:¢) + 1)],

where 8, = (8° — 4w®)® For t >> 1 and v < B,
these expressions reduce to

@ = lwo + Oluo/B)le™""°[1 + 0(/8%)]
@ = @y + GT/m)[1 — ¢"*(1 + O("/8)].

Thus, the modified Langevin equation is correct
to first order in w/B when ¢ 3> 87'. (The u,/8 term
is small compared with any macroscopic z.)

For ¢ >> 8/«’, both the modified Langevin equation
and the Langevin equation predict that

Wz, t; 20) — (mw’/2rkT)? exp (—mw’z®/2kT),

which is the equilibrium Boltzmann distribution.
The Smoluchowski equation for this problem is

W _ 3 (4,90 | o)
at 9 \§ oz g /"
of which Eq. (18) is a solution.

The Centrifugal Potential

The apparent acceleration of a particle in a
centrifuge rotating with with angular frequency
 is w’z. Thus the modified Langevin equation is

z = BAW) + B W,
the solution of which is

z = ze®" 4 g7 f exp [Wi(t — £)/BA() de.

Application of Eq. (3) in its one-dimensional form
gives

2 3
Wiz, t; zo) = ( mw )
( X kT (™" — 1)

mw’(x — xoe‘””/ﬂ)2>
X ex (— - . 19
P\ k@ 1 19)
This is a Gaussian with

@ue = @oe” ™"

and
(e = (@)2 + kT/ma") (" — 1).

The Langevin equation for this problem is



1372

#= =Bt + A() + o'z,

the solution of which may be obtained by the
“variation of parameters’”’ method:

x = ze P’? cosh (B:1/2) + Bi'(Bxo + 2ug)e *?
X sinh (8,1/2) + 26" [ &0
0

X sinh [8,(¢ — £)/2]A() dE,

where 8, = (8° + 4w’} This, combined with
Eq. (3), predicts that the probability distribution
is a Gaussian with

(T)ew = 2oe™"’* cosh (8,2/2)
+ B7(Bxo + 2uge " sinh (8,4/2)
and
& = (2)i, + 28T (mBY)'[(8, — B) e
~ 2871 =)+ B+ /A — PP

When ¢t > B/w’, the modified Langevin equation
predicts that (z*) — (z)* increases as ¢****®, but
the Langevin equation predicts ¢ ‘. Thus, for
large enough times, the two results diverge. How-
ever, if

t K w2 P
and » < B, the Langevin results become
(e = [20 + Oluo/B)1e*”*[1 + O("/87)],
@) = (@ + GT/m")[1 + 0@"/6°)]
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X {1 + 0't/8)] — 1 + 06*/8)},

which is similar to the results of the modified
Langevin equation.

The solution to the modified Langevin equation,
Eq. (19), is the exact solution of the Smoluchowski
equation for this problem.

CONCLUSIONS

1. The modified Langevin equation is, in some
cases, easier to solve than the other equations
which are used to describe Brownian motion.
Therefore, it is useful to know under which condi-
tions the equation is valid.

2. Under certain restrictions (given above) about
the force acting on a Brownian particle and about
the time, the modified Langevin equation is equi-
valent to the Langevin equation for the calculation
of configuration space averages. The conditions
given are sufficient, but not necessary, to imply
the validity of the modified Langevin equation.

3. When the Smoluchowski equation is valid,
the modified Langevin equation is probably valid,
and in some situations they give identical results.

ACKNOWLEDGMENT

Stimulus for this work was provided by discussions
with Professor Katchalski,® engaged in by one of
the authors (I. O.) during a stay at the Weizmann
Institute of Science.

3 M. Gehatia and E. Katchalski, J. Chem. Phys. 30,
1334 (1959).



JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 4, NUMBER 11 NOVEMBER 1963

Comparison of Two Generalizations of Maxwell’s Equations
Involving Creation of Charge

Lu. G. CHAMBERS

Mathematics Department, University College of North Wales, Bangor, Wales
(Received 6 June 1963)

A comparison is made of the Lyttleton—Bondi, and the Watson theories for the electromagnetic
fields produced when charge is created. It is shown that, except when dimensions of the order of the
radius of the Universe are involved, the difference is negligible and that consequently the Watson
theory, being mathematically more simple, is the better.

1. INTRODUCTION
LASSICALLY, Maxwell’s equations of the elec-
tric field assume the conservation of charge.'
However, the hypotheses have been made that the
absolute values of the charges of the proton and
electron are not equal, and that there is creation of
hydrogen atoms (and hence charge). Two different
generalizations of Maxwell’s equations have been
put forward which discuss this.””> One of the gen-
eralizations is due to Lyttleton and Bondi,” and the
other to Watson.*
In both theories, two of Maxwell’s equations re-
main unchanged:

V xE + dB/ot = 0, (L.1)
VB =0. (1.2)

The solution to these is given by
E= —-VV — 8A/at, B = V xA, (1.3)

A and V being the vector and scalar potentials,
respectively. The charge creation is however intro-
duced in different ways. In the Lyttleton-Bondi
theory, the generalization is made by feeding the
potentials back into the remaining Maxwell equa-
tions which take the form

VxH — aD/at = J — (1/ulHA,  (1.4)
VD =p— (e&/D)V, (1.5)

where [ is of the dimensions length and is suggested
by Lyttleton and Bondi to be of the order of the
radius of the Universe. [This is the reason for the
negative signs on the right-hand sides of Eqs. (1.4)
and (1.5)]. On the other hand, Watson’s modifica-
tion introduces a new potential N, and the modi-

tJ. A, Stratton, Electromagnetic Theory (McGraw-Hill
Book Company, Inc., New York, 1941), p. 6.

2 R. A. Lyttleton and H. Bondi, Proc. Roy. Soc. (L.ondon),
A252, 313 (1959).

3 Ll. G. Chambers, Nature 191, 262 (1961).

W, H. Watson, Proceedings of the Second Symposium on
Apfqlied Mathematics (American Mathematies Society, 1950),
p- 49.

fication is given by
VxH — oD/3t = J — VN, (1.6)
VD = p + pe(0N/38). (1.7)

It will now be convenient to discuss the implica-
tions of these two formulations and make compari-
sons of the fields which would be generated by the
creation of a charge at zero time at the origin.
Clearly, any charge creation can be obtained from
this. Similarly, the fields associated with an ele-
mentary current creation will be calculated.

2. THE LYTTLETON~-BONDI FORMULATION

It is fairly easily seen® that

19°A A
VA — Zof TPE" ~ o), (2.1)
ey _ 10V V. p
vV - ot I —eo ! (2:2)

and the creation rate of charge density is given by

18V

= ~) 2.3

: ée__L_< .
VJ+at_,uol2 VA+c ot

Consider now the creation of a charge @ at the origin

at time { = 0. The equation governing this is
2y 10V V. —QiDH(Y

v V C2 at2 l? - ]

€

(2.4)

4(r) being the three-dimensional delta function with
pole at the origin, and H(f) the Heaviside unit
function. Clearly, the only field this will generate
will be E, = —aV/ar.

The Green’s function associated with Eqs. (2.1)
and (2.2) is the solution of
19°G 1

V6~ 357 — 56 = (),

ZForE (2.5)

5 Reference 1, p. 24.
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and is®
1 r r Jle/ D@ = 7~/ )*}}
”zm{a("“c) ‘H<‘ c) 1T E =
(2.6)
Thus the solution of Eq. (2.4) is
Q A, 7 [ Lle/DEE =/l ]}
dareyr {H(t_C)[l l rle (T T /C )é '
(2.7)

which may be rewritten in the form

4;2{)? H(t - E)

Jille/D(* = r*/eh}]
41reol ( )f (+* = /K dr.
The associated electric field is
E, = —aV/or
__9 N, @ r
- 4weo'r2 H(t - ) + 4areqcr 6<t - c>
Jil <c/z><a- - r“‘/e )]

x 41reocl ( ) f — /) dr

-Q 1. Jl [c/D(r — 7*/c)]
+ drreol H(t - c){* ¢ Tl—l,r/c (7 — /e

© [ Llle/D(= — /)] }
+f,/car[ (7 —r/cH ] dry. @8)

The third term clearly vanishes, and the limit in
the fourth term is %(¢/0).

Also, (d/dz) {(1/x) Jilax)} = (—a/z) J:(az).
The integral in the last term thus assumes the form

[ ~—?§)%. c L/ =),

¢ (7 — /e
_ f _ e Lalle/D" = /N
12 r /c) l (+ — /) )

Thus the electric field becomes

_Q_ ( AP ( ) Q ( _ ’Z)
4«025” \)+41regcr R Ul
( )f Lole/D(* —r*/ch?]

4&71'50(:l2 (r* — r*/c%)
The third term is of order {”°, and the fourth of
order [™*, The creation of current may be dealt

with in a similar manner. Consider the current
defined by

dr. (2.9)

J = mé@)s(Dk, (2.10)

This represents a current density in the z direction
which vanishes everywhere except at the origin and
at zero time. (m is of the dimensions of electric

p = 0.

¢ P. M. Morse and H. Feshbach, Methods of Mathematical
fgzs:!;gcsv (IMchraw-Hﬂl Book Company, Inc.,, New York,
o]

G. CHAMBERS

dipole.) Any arbitrary current creation can be ob-
tained by integration of fields derived from current
densities of this type.

The only one of Eqs. (2.1) and (2.2) which is
involved is

2 18°4, _
V°A, ~F le = —uemd(@® 8@, (2.11)
where 4, = —u,mG. The associated fields are
B = V x4, E = —0A/dt,

Writing r° = 2° + &, it follows that the only fields
which are nonzero are (if &, ¢, 2 are cylindrical co-
ordinates)

H =m Qg 6w 8G m @ oG
¢ s 37' ar - U ror
= msin 8 ?{5 in spherieal coordinates, (2.12)
and
G

Clearly, Eq. (2.12) can be written as

. 3 1 r
= msin Bé—r[~4w 6(15 c)}

msin § 9 Julle/ D& *‘7'2/02)*}
T e ar{H(t c) (& — P/

_ +msm9 (t~t)+MS1n96’( :_-)
c 4wer c

H,

_ m?f%‘q L 5(t c) Jy [(c(/tn(z r—/;)@)*)
8 gl 1) 2 e ey
" clJz[@/z)(t ;—-/;@

- GRS
ook (O

msin 6 Llle/D(E — P/DY B’(t — ’c_') (2.13)

drlc & - /)

Here again the third and fourth terms are of order
7%, and 1%, respectively.
The associated value of E, is given by

_ 8t — r/c)
£ "°mat[ 4ot ]

{H(t - ’.’) J /D — ?‘2/62)*]}

HoM i
c # — /)

+ 4xl St




GENERALIZATION OF MAXWELL’S EQUATIONS

— —um 6'(;‘4;1‘/0)
o Jille/D(E — 7 /cH}
T ‘S(t c) # =/
m 3 Jile/D(& — /)]
+ };? H(t ) at # —r/e %3

(—pom/4xr) &' (t — r/c)
— (uom/8xl)cd(t — r/c)
+ (uom/4xDH(t — r/c)

¢ Jyle/D(@E — 7*/eH !
1 & —2/H (=)

= —(uom/4mr)¥'(t — r/c)
+ (uome/8xl’)3(t — r/c)

e [1
- Z-;rl2 H(t ) G
X Llle/D(E — /. (2.15)

Here the second and third terms are, respectively,
of order I™% and I™*.

X =

3. THE WATSON FORMULATIOR

If charge is conserved, Maxwell’s equations lead to

2 62E 3] Vp
VE — Ho€o 53~ 3t = Mo 4, ot + — 6 ' (3-1)
and
VH — uoeo(3'H/3) = —~V % J. 3.2

Clearly, replacing J by J — VN, and p by » +
Boeo (AN /3t), these equations retain the same form,
and so it follows that any field due to nonconserva-
tion of charge must satisfy

V°E — poeo(d°E/387) = 0,
VZH - #050(32H/3t2) = O.

That this will be the case follows also from the
following.
From Eqgs. (1.6) and (1.7) it is possible to write

V-] 4+ 0p/3t
= VN — ne(d°N/3t) = Q) 8(t)  (3.3)

if a charge @ is created at the origin at zero time.
Solving,

N = —(@Q/4ar)8(t — r/c). (3.4)
From Eq. (1.7), the field due to N is given by

10 oN
€073 5, °EL) = poeo o (3.5)
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Integrating and remembering that E must be zero

at infinity,
.. Q. ( _ C)
(t c) + 4regre o\¢ e/’

59
Considering now an elementary current creation as

—3 (3.6
indicated in Eq. (2.10),

- 47!'607'2

J = mo@odk, p=0, @3.7)
VN = ot %2;! = e o sty 2 500,
It follows that
N - ;"%[5(‘:’/")]. (3.9

The appropriate solution of Eqgs. (1.1), (1.2), (1.6),
and (1.7) is given by

H = Hy, E = Fk,
Eg(aE/ aZ) = #QEQ(aN / at)'

whence
E = —(uom/4m)[8'(¢ — r/c)/r]. (3.9)
In an exactly similar manner,
= (msin 8/4xr") 8(t — r/c)
+ (msin 8/4=r)8(t — r/c). (3.10)

4. CONCLUSION

It will be seen that, in both cases, the difference
between the fields obtained is of order I™* at the
most. Any fields which involve charge creation may
be calculated by integration of the fields of the
type considered, and so the statement is true more
generally. Now if I is of the order of the radius of
the Universe, this difference is negligibly small, it
would not be possible to measure it, and so for all
practical purposes the two formulations would be
equivalent. (This of course would not be true when
the system is of the order of the size of the Universe
as in the origin Lyttleton—-Bondi paper.”) The dif-
ference between the fields does, in fact, represent a
tail of negligible proportions.

Because of the equivalence of the fields produced
on the two different formulations, it is desirable to
use the simpler formulation, and this is the Watson
formulation, since the differential equation involved
—the wave equation—is much simpler than that
associated with the Lyttleton—Bondi formulation,
namely the Proca equation. Thus, for any system
on a scale smaller than that of the Universe, the
Watson formulation is the better.
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In an attempt to understand the conditions under which the neutron transport equation has solu-
tions, and the properties of those solutions, a number of existence and uniqueness theorems are
proved. One finds that the properties of the solution are closely related to the boundedness of the
source as well as to certain velocity-space integrals of the scattering kernel. Both time-dependent
and time-independent equations are considered as are also the time-dependent and time-independent
adjoint equations. Although only a very few of all possible existence and uniqueness theorems for these
equations are considered here, the work may serve as a guide to the treatment of similar problems.

1. INTRODUCTION

ARIOUS theorems concerning the existence

and uniqueness of solution to the neutron
transport equation have appeared in the literature.
For example, Case' has proved uniqueness for the
one-speed, time-dependent equation under the
assumption that the kernel is rotationally invariant.
He has, in addition, shown that under the same
assumptions the solution of the time-independent
equation is unique if ¢(r), the mean number of
neutrons emitted per collision, is everywhere less
than one. Olhoeft® has considered the more general
velocity-dependent case, and has shown, subject
to the same restriction on ¢, that a unique, integrable
solution exists for the time-independent equation.
Davison’® has made some rather general remarks
concerning existence and uniqueness for the time-
dependent case, but has only outlined the methods
of proof and has actually said little about the
restrictions which must be imposed in order that
the theorems be true.

Basically, the situation is the following: There
are a number of possible restrictions which one can
imagine might be applied to the cross sections
and sources appearing in the neutron transport
equation. For certain of these restrictions it is
possible to prove that continuous solutions exist;
for other sets of restrictions the solutions may not
be continucus but still integrable functions of one

| * Surrorted in part by the Office of Naval Research,
Derartment of the Navy, and the United States Atomic
Energy Ccmrmission.

1 K. M. Case, Rev. Mod. Phys. 29, 651 (1957).

? Jack E. Olhoeft, “The Doppler Effect for Non-Uniform
Temperatures,” University of Michigan Ph.D. Thesis (1962).

¢ B. Davison, Neutron Transport Theory (Oxford Univer-
#ily Press, London, 1957).

or more of the independent variables involved
[i.e., position, velocity, and (in the time-dependent
case) time]. For other restrictions, it may be impos-
sible to prove anything. We have investigated a
large number of possible restrictions which might
reasonably be imposed upon the cross sections and
sources, and investigated the existence of unique
solutions for each case. In this way, we have tried
to bring some order into the chaos of “obvious’’ or
partially proved results which at the present exist
in the literature.

In addition, we consider not only the transport
equation but the time-dependent and time-in-
dependent “adjoint equations,” and investigate the
sufficient conditions that unique solutions exist for
those equations. It turns out that there are many
cases in which existence and uniqueness theorems
can be proved for one or the other, but not both.

In Seec. IT of this paper, we convert the transport
and adjoint equations to integral equations in the
usual manner. Then, in Sec. III, we discuss the
restrictions on the sources and cross sections which
will, for physical reasons, be applied in all cases.

Then, in Sees. IV and V we consider various
existence and uniqueness theorems for the time-
dependent transport and adjoint equations. In
See. VI we consider theorems for the time-in-
dependent equations (both transport and adjoint)
and finally, in Sec. VII, we discuss certain ‘‘by-
products” of the theorems—a formula for the
minimum ecritical size of a reactor and a proof
that the time-dependence of the solutions of the
time-dependent equations must obey certain restric-
tions.

We have made no attempt to be comprehensive
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in our treatment of the existence and uniqueness
problem. Indeed, one can imagine virtually an
infinite number of possible theorems similar to
those which we prove. However, we have presented
some of those which we feel have the most intrinsic
interest and, in addition, demonstrate well the
method of proof. In this way, if any of the conditions
which we consider are not met in a particular
problem, our work may serve as a guide to the
correct treatment.

II. INTEGRAL EQUATION FORMULATION
A. The Transport Equations
The time-dependent transport equation is
Y(r, v, H/ot
+ o(Q-V + ofr, V))yY(r, v, ) = g(r, v, )

+ f vo(r, v — VY(r, v/, §) dv, (1a)
while, in the stationary limit, we have
v(Q-V + ofr, MY, v)

= ¢(r,v) + fv’a(r, v — vy, v) dY'. (1b)

Here ¢ is the neutron angular density (i.e., the
one-particle distribution function); v = »Q is the
neutron velocity; o(r, v) is the total cross section,
and the kernel o(r, v — v) is the cross section
for a neutron of velocity v/ to be emitted into
d’ about v.

Equation (1) may be converted into intergal
equations in the usual way, i.e., by introducing
the Green’s function of the left-hand side. This
Green’s function is well known.* We obtain for
the integral equation equivalent to (1a)

Y, v, 8) = Qr,v, 0
+ fo dt’ f et — V(i — t), v — )
X P — v(t — ), V', )
Xam[—[ﬁdp—wp-wywdw], 22)

where

Qr,v, ) = Y(xr — vi, v, 0)

X exp [—f vor — v(t — t'), V) dt’:l
[

4+ K. M. Case, F. de Hoffmann, and G. Placzek, Introduction
to the Theory of Neutron Diffusion (U. S. Government Printing
Office, Washington, D. C., 1953).

1377
+fwm—m—mmw
0

><mp[—fﬁdr—vu—-wxwdyl- (2b)

Actually, we shall prove theorems involving the
esistence and uniqueness of solutions within a
given volume of space V bounded by a surface S
when the incoming (or, in the case of the adjoint
equations, the outgoing) angular distribution is
specified on S. The simplest way to modify Eq. (2)
to describe this situation is to define q(r, v, ),
y(r, v, 0), o(r, v), and o(r, vV — v) to vanish for
r ¢ V. Then the specified incident angular dis-
tribution ¢,(r,, v, t) is replaced by a surface source
¢.(r,, v, ) on S in the usual manner:*

0., v, )
v ]Q°n0l yir,, v, 1), t>0,
= 0 otherwise, (3

Q'no < 0,

where n, is the outward normal to S. Then Eq. (2)
still applies [understanding the redefinitions of g,
¢, o, and ¢(tr, v — v) mentioned above] with an
additional term @, added to @, Eq. (2b), to account
for the surface source:

Qc = vl qs(ray v, t— R,/l))

X exp [—alr,r — R,Q, V)]. ey

Here « is the usual optical path
R
alt, v, v) = f ds«r(r — SB) , (5)
0 R

where R, is the distance from r to the surface S
along the direction —Q (See Fig. 1). Note: R, =
R,(r, Q).

Equation (2), thus modified, is the general
integral equation formulation of the time-dependent
neutron transport problem with which we shall be
concerned. It is convenient to rewrite it in the
somewhat more tractable form:

‘l/(rr v' t) = Q,(r¥ v’ t) + Kw(rf vl t)!

where K is the integral operator

(6a)

Fia. 1.
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Kfx, v, 9
= [av [ar [ @ s — 1+ w6 — 0y

X exp [—f va(r — v(t — "), V) dt"]

X v'e(t’, v = 0)f(x’, v, 1), (6b)

and

Q@ v,) = Q@ v, +Qur,v, 8. (6c)

The integral equation formulation of the time-
independent transport equation (1b) is obtained
in just the same way, ie., by introducing the
Green’s function of the left side of Eq. (1b). We
obtain

o, v) = Q'(r,v) + A¢(r, V),

where A is the integral operator

(7a)

Af(e, v) = j;R. dR f d’r’ f d%’' 5’ —r + RQ)

X exp [—alr, 1/, V)o@, v — 0fF', v), (7b)

Q'(r,v) = q.(r,,v) exp [—alr,r — R,Q, V)]

+ fR. gir — RQ, V) exp [—alr,r — RQ, V)] dR,
° 7o)

and
o(r, v) = vy(r, v). (7d)

Again we mention that the cross sections and
sources have been defined to vanish for r & V
(or for t < 0).

B. The Adjoint Equations

The time-dependent adjoint equation is defined
to be

WETD | 0.9 + o, ¥, v, 0
= 40, v, ) o [ @, v VI V), (80
while the time-independent adjoint equation is
W(—Q-V + ofr, V)¥(r, v) = glr, v)
+o [ dvale, v v)ia, v). @)

The adjoint of a solution of Egs. (1a) and (1b)
will be taken to be the solution of Eqs. (8a) and
(8b) subject to appropriate boundary conditions.

K. M. CASE AND P. F. ZWEIFEL

These boundary conditions are that the outgoing
density on S, ¥,(t,, v, {), rather than the incoming,
will be specified. As before, we replace the boundary
conditions by a surface source:

0.(r,, v, )
v Ig'nol ‘ﬁo(ru v, t): Q-n, > 01 > Ov
= (0 otherwise. 9

N

We now convert Eqgs. (8) into integral equations
just as for the case of transport equations, obtaining
for the time-dependent equation

¥, v, ) = @', v, ) + Ry, v, 0),
where K is the integral operator

Kfx, v,
=y fot dt’ f d’’ f ' 8@’ — 1 — v(t — t))

(10a)

X exp [—f vo(r + v(t — t'"), v) dt”:l

X o/, v V', v, 1), (10b)

and

Q'x,v, t) = J + v¢, v, 0)
xem[—fmﬁ+va—wxwmﬂ

+ﬁww+WPw%mw

X exp [—f‘ vo(r + v(t — ), v) dt”:|

+ (l/v)qx(ru v, t— R,/I))

X exp [—alr, r + E,Q, v)]. (10¢)

As before, cross sections and the initial distribution
are defined to vanish forr & V. Also, B, = B,(r, Q)
is the distance from r to the surface along the
direction 4 Q (rather than along the direction —Q
as in the case of the transport equation). See Fig. 1.

For the time-independent adjoint equation we
obtain similarly

U, v) = U@, v) + K, v,
where A is defined by

(11a)

me=iﬁumdedeMﬂ—r~Rm

X exp [—alr, ', V)] o', v o v, v/), (11b)

and
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Q'r, v) = 4., v) exp [—alr,r + R.Q, V)] (110

+ fR' gir + RQ, v) exp [—alr, r + RQ, V)] dR.
0

II1, BASIC DEFINITIONS AND ASSUMPTIONS

In all of our subsequent discussions we shall
assume that the source functions @'(r, v, £} and
Q'(r, v, t) as well as the cross sections o(r, v/ — V),
and o(r, v), obey certain physically reasonable
conditions,

(1) @ and @’ are positive for all values of their
arguments.

(2) Either @' and @’ are bounded or they can
be written as the product of bounded functions
multiplied by delta functions in one or more of
their arguments.

(8) There exists a v, < « such that for [v | > v,,
Q' and @' vanish identically.

(4) There exists a v, < = such that ¢{r,v'—v)=0,
forv > v > v,

Assumptions (3) and (4) permit us to avoid any
difficulties that the infinite range of the velocity
variable might otherwise introduce since together
they imply that there are no neutrons present
with speeds greater than v, = max(v,, v,). Then
the integrals over ¢’ in any of the integral equations
can be written as

fd%'—)fdﬂ’fmu’z v’
)

These restrictions can actually be relaxed to some
extent; we might assume that Q' and @’ go to zero
sufficiently rapidly as v — o that, if other restrie-
tions are obeyed, the infinite range of v need not
cause any trouble. However, assumptions (3) and
{4) are physically reasonable, and so we shall make
no attempts to relax them.
(5) a(r, v — v) can be written in the form

or, vV ->v) = 2 N.(@o(v/ —>v), (13)

where N(r) is bounded. [Actually N,(r) represents
a density of nuclei, and o; is a microscopic cross-
section, so we are merely assuming that there are
no infinite concentrations of atoms present in the
systems that we consider.]

(6) The ecross-section o(r, v) can be written
in the same form:

o(r, v) = Z N.(®)a,(v).

(7) ve (v) is bounded. We expect o.(v) to be
bounded except possibly for » — 0, in which case
we admit o,(») ~ 1/v.

(12)

(14)
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(8) o:(r, v), or, vV — V), 0.(v), and o,(v — V)
are all positive.
(9) The function
ofr, ¥) = f o(e, v — V) &% [olr,¥)  (15)
is positive. This assumption is also physically
reasonable, since c(x, v) represents the mean number
of neutrons emitted per collision. We define a
similar microscopic quantity £,(v) which is also
bounded
£i(v) = f o, (v— V) dV [o.(¥). (16)
We shall also have occasion to use two further
functions,

e, v) = f o(t, v — v) d%'[e(t, v), (17a)

and

', v) = f Vol(r, v = v) dv’[e(r,v).  (17b)

It may be noted that ¢’ and ¢’ may not always
be bounded but they (like ¢) are always positive.
Similarly the functions

giv) = f o:(v' = v) &' fo,(v) (18a)

and

20 = [vow >V dfol)  (18b)

may not be bounded but, like £;(v), they are positive.

IV. THE TIME-DEPENDENT TRANSPORT EQUATION

Bearing in mind the restrictions discussed in
Sec. III, we consider now various existence and
uniqueness theorems for the time-dependent trans-
port equation.

Theorem 1. Let Q'(r, v, #) be bounded. Then
if ¢’(r, v) is bounded, a unique, positive, and
continuous solution to the time-dependent transport
equation exists,

We prove the theorem by constructing the
Neumann series solution to Eq. (6):

W, v, 1) = Z balr, v, 0, (19)

where

Yolr, v, ) = Q'(r, v, 1), (208)
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and
Valr, v, ) = Kyl v, 8). (20b)
By hypothesis,
0SS Y= M< . (21)
Furthermore,
i, v, ) = KQ'(r, v, 1)
S MerxOmad. (22)
Continuing the iteration we find
Ut ¥, 1) = M(chnnoms)"("/n)). (23)

Thus, the Neumann series converges pointwise,
and the theorem is proved. The fact that ¢(r, v, {)
is positive follows from the fact that every term
in the series is positive.

Next, assume that ¢”/(r, v) is not bounded. Then
we can state:

Theorem 2. Let Q'(r, v, {) be bounded. Then a
unique, positive solution to the transport equation
exists which is a continuous function of ¢ and r
and an integrable function of v,

Proof: The proof proceeds along the lines of
Theorem 1; however, it is sufficient to show that
the series

2 f &, v, 1) (24)
converges pointwise. Consider first
fd30¢1(r, v M fo‘ dt f v d’
X [ @wle vt~ 0, v 5. @)

However, we have assumed in Sec. III that «(r,
v/ — v) could be written in the form

o(r, v/ —v) = }: N (@)o(v — v), (26)
where the N,(r) are bounded, say by N, Then
[ @i v, 0
< Mt 3 N, f o dVEW)oV).  (27)

But £,(v') and o,(v') are assumed in Sec. III to
be bounded, say by &,, and ¢.. Then

fd"vw,(r, v, ) £ Mt D Niotiooio f o d%, (28)

and since v £ v,, (cf. Sec. ITI), we have

K. M. CABE AND P. F. ZWEIFEL

f Popie, v, ) < Kt, 0<K< . (29
Similarly, we find
fdavth(r, v, 8 = Iiyt , 0=K' <=, (30

and the theorem is proved. Again each term is
positive, so that the solution is positive.

Next consider the case that Q'(r, v, ¢) is not
bounded, but integrable. The following theorems
are simple to prove by straightforward construction
of the Neumann series, as above.

Theorem 3. If Q'(r, v, t) = Q(r, v)3(t), where
Qo(r, v) is bounded, then, for the time-dependent
transport equation:

(a) If ¢”(r, v) is bounded, a unique, positive
solution ¥(r, v, ¢), exists. ¥(r, v, i) is a continuous
function of r and v, and ¢(r, v, t) — Q'(r, v, ¢) is
a continuous function of ¢.

(b) If ¢"(r, v) is not bounded, then the solution
Y(r, v, t) may be an integrable rather than a con-
tinuous function of v. Otherwise the conclusions
are unchanged.

Theorem 4. If Q'(xr, v, t) = Q\(r, t)é(v —
where @,(zr, ) is bounded, then:

(a) If vo(r, vV — v) is bounded, a unique,
positive solution y¥(r, v, ) exists. ¥(r, v, ¢) is a
continuous function r and ¢, and ¢(r, v, t) — Q'(r, v, 1)
is a continuous funetion of v.

(b) If va(r, v/ — v) is not bounded, then
y(r, v, t) — Q'(r, v, t) may be an integrable rather
than a continuous function of v. [In proving part
(b) we make use of the fact (cf. Sec. III) that »
and £,(v) have both been assumed bounded.]

Theorem 6. If Q'(r, v, 1) = Qi(v, )d(r — 1),
where Q(r, ?) is bounded, then:

(a) If ¢’(r, v) is bounded, a positive, unique
solution ¥(r, v, t) exists. ¥(r, v, #) is a continuous
function of v and ¢, and an integrable funetion of r.

(b) If ¢"(r, v) is not bounded, then ¥(r, v, t)
may be an integrable rather than a continuous
function of v.

Vo),

The theorems for the cases in which Q'(r, v, ¢)
involves a delta function in more than a single
variable, may easily be constructed by appropriately
combining the above theorems. We shall not state
them separately.

V. THE TIME-DEPENDENT ¢ADJOINT” EQUATION

Here we deal with Eq. (10). The theorems will
all be stated without proof, since the proofs are
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completely analogous to those given in the previous
section.

Theorem 6. If §'(r, v, t) is bounded, then a con-
tinouous, unique, positive solution exists. [Note
that in proving this theorem it is necessary to
make use of the fact that c(r, v) is bounded (cf.
See. I11).]

Theorem 7. If Q'(r, v, t) = Qolr, V)3(t), where
@, isbounded, then a unique, positive solution exists.
J(r, v, t) is a continuous function of r and v, and
J(r, v, ) — Q'(r, v, ) is a continuous function of .

Theorem 8. If Q'(x, v, 1) = Q.(r, Ho(v — Vo),
where @, is bounded, then:

(a) If vo(r, vV — v) is bounded, a unique,
positive solution ¥(r, v, f) exists. ¥(r, v, {) is a
continuous function of r and ¢, and ¥(r, v, §) —
Q'(r, v, t) is a continuous function of v.

(b) If vo(r, v/ — v) is unbounded but £’(r, v)
is bounded, then the conditions above hold except
that ¥(r, v, {) — @'(r, v, t) may be an integrable,
rather than a eontinuous, function of v.

Theorem 9. If Q'(x, v, 1) = Q.(v, D)é(r — 1),
where @, is bounded, then a unique, positive solution
J(r, v, t) exists. ¥(r, v, £) is a continuous function
of v and ¢, and an integrable function of r.

Again, when @’ involves delta functions in more
than a single variable, the appropriate theorems
ean be constructed by appropriately combining the
results above, and so we shall avoid stating them
explicitly.

V1. THE TIME-INDEPENDENT TRANSPORT
AND ADJOINT EQUATIONS

In certain rather restrictive cases, it can be
proved that unique, positive solutions of the time-
independent transport and adjoint equations exist.
In general, the restrictions are much more severe
than is the case for the time-dependent equations;
we shall see later that this is to be expected.

Theorem 10. Let @' (r, v) be bounded and positive.
Then if ¢/(r, v) < 1, a unique, positive, and con-
tinuous solution to the time-independent transport
equation [Eq. (7)] exists.

We note that the integral equation (7) differs
from Eq. (1b) in that in the former, the dependent
variable is the angular flux ¢(r, v) rather than the
angular density ¢(r, v). Thus all theorems which
we shall prove involving the time-independent
transport equation may not apply to the angular
density unless ¢(r, v) vanishes sufficiently rapidly
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as v — 0. This is not a real worry, since one is
generally interested in the flux rather than the
angular density.

As usual, we prove the theorem by constructing
the Neumann series:

B, V) = 2 éalr, V), (81a)

with
$o(r, V) = Q'(r,0), (31b)

and
61, V) = A'B(r, V) = Agaa(r, V).  (310)

By hypothesis, ¢,(t, v) is bounded and positive:
0= ¢olr, V) S M < . (32)

Next assume ¢,_.{r, v) is bounded by M’, say.
Then

6.0, V) = Adprlr, V) S M'ch,, f dR
9

X exp [—a(r,r — RQ,V)]o(t — RQ, V). (33)

The integral is easily shown to be equal to unity.
Thus

é.(r, V) £ M'ch,. < M, (34)

since we have assumed ¢'(r, v) < 1. This proves
the theorem since the Neumann series converges
pointwise, and each term is seen to be positive.

The next theorem is readily proved in essentially
the same manner.

Theorem 11. If Q' (xr, v= @Q,(r, v)é(v — Wv,),
where @,(r) is bounded, then if ¢/(r, v) < 1and
o(r, vo — v) i8 bounded, a unique, positive solution
y(r, v) exists. ¢(r, v) is a continuous function
of r and Y(r, v) — Q'(r, v) is a continouus function
of v.

Theorem 12. If ofr, V)@ (x, v) is infegrable, then
if e(r, v) < 1, a unique, positive, integrable solu-
tion exists.

This is the theorem proved by Olhoeft.” The
procedure is to construct the Neumann series for
the collision density x(r, v) defined by

x(xr, v) = o(r, V)¢(x, V), (35)
and prove that
f d& &rEKx. (@, v) £ f d&r dox.(r, v). (35)

Sinece the details are given in reference 2, they
will be omitted here.
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We next turn our attention to the time-independ-
ent adjoint equation. Here the theorems are quite
analogous to Theorems 10-12 proved for the
transport equation, except that the roles of ¢ and
¢’ are reversed. Since the proofs are so similar,
we simply state the theorems.

Theorem 13. Let (1/2)Q'(r, v) be bounded and
positive. Then if ¢(r, v) < 1, a unique, positive,
continuous solution exists to the time-independent
adjoint equation.

Theorem 14. Let (1/0)Q'(xr, v) = Q,(1)é(v — o),
where §,(r) is bounded and positive. Then if
e(tr, v) < 1 and o(t, v — ¥,) is bounded, a unique,
positive solution ¢(r, v) exists. J(r, v) is a con-
tinuous funetion of r and ¥ — (1/v)Q is a continuous
function of v.

Theorem 15.1f ¢'(r, v) < 1, and if (1/v)e(r, v)@'(r, v)
is integrable, then a unique, positive, integrable
solution exists.

Note that in each of these theorems we have
placed restrictions on (1/#)Q’ rather than on §'.
If we make the reasonable assumption that no
zero-energy source neutrons are introduced into
the system, then the conditions can equally well
be stated as conditions on @’ rather than on (1/2)§’.

Next we prove a uniqueness theorem for cases
in which existence has not been proved.

Theorem 16: If a solution of class L* of the time-
independent adjoint equation exists, then an L’
solution to the time-independent transport equation,
if it exists, will be unique.

We sketeh the proof. Suppose there are two
solutions to the transport equation, ¥, and ..
Then ¢ = ¢, — ¢, obeys the equation

o(Q'V + ofr, V)1, v)

- f v'a(r, v/ — V)Y, v) d%',  (37)

with
w(rsy v) = Oy Q'ng < 0- (38)

Consider the adjoint equation with zero outgoing
angular density:

W(—Q-V + oft, V)Y, v)
= 4@, v + [0l v Ve V) Y, (39)

Y., v) =0, (40)
(We have hypothesized that such a solution exists.)

Q'ng) > 0.

K. M. CASE AND P. F. ZWEIFEL

If we now multiply Eq. (37) by ¥(r, v), and multiply
Eq. (39) by ¢(r, v), subtract and integrate over
r and v, we obtain

f & [ dsanyte, vt v

= f &or f d’ f dva(r, vV — v)
X ¥, v)¥(r, v)

- f d’r f d% f d've(r, v — ) (r, vV)Y(r, v)

~ [ @ [ @ovte,wate, . @
The left-hand side of this equation has been obtained
with the help of Gauss’ Theorem, and by virtue
of Egs. (38) and (40), it vanishes. Similarly, the
first two terms on the right side of Eq. (41) cancel,
and we obtain

f &r f Eoglr, Vile, v) = 0. 42)

Since §(r, v) is arbitary (and positive), it follows that
Y(r,v) =0, 43)

proving the theorem,

We note that the conditions of this theorem are
satisfied for (among other cases) ¢(r, v) < 1; thus,
Eq. (39) can possess no solution for ¢(r, v) < 1
subject to the boundary conditions (38). Since these
are precisely the equations satisfied by the neutron
density in a reactor, we have succeeded in proving,
as a byproduect, the not surprising result that a
reactor cannot be ecritical if fewer neutrons are
emitted than absorbed following each collision
(¢ < 1). A simpler proof of this theorem (and of
the following theorem) for the case that only
scattering and pure absorption are present (i.e., no
fission), is given in the Appendix.

The analog of Theorem (16) is:

Theorem 17. If an L® solution of the time-in-
dependent transport equation exists, then an L°
solution of the time-independent adjoint equation,
if it exists, will be unique.

The proof of this theorem is essentially identical
with that of Theorem 16. The implication of this
theorem is that a reactor cannot be eritical if
¢'(r, v) < 1. This can be seen from a slight modifica-
tion of the arguments used above to show the
same result for ¢(r, v) < 1.
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VII. SOME MISCELLANEOUS RESULTS

In the previous section we have pointed out
that the uniqueness of the time-independent solution
is equivalent to the statement that a reactor cannot
be critical. Thus we have shown (Theorem 16)
that no reactor can be critical for ¢(r, v) < 1,
which is, of course, physically obvious. However,
such a condition is somewhat too stringent since
it is clear that, for a system of finite size, neutron
leakage may prevent a reactor from becoming
critical even for ¢ somewhat larger than one.

We can obtain an estimate of the minimum
value of ¢ for which a reactor of a given size will
become eritical from Theorem 12. The proof,
which we omitted in See. VI, involves the construc-
tion of the Neumann series solution to the following
integral equation for the collision density x = g¢:

x(r, v) = ofr, V)Q'(r, v) + Ax(r, V),

where X is the integral operator

(44a)

R,
Afer, v) = fo dR f dvv’ v d*

X exp [—ealr, ', V)o@, v) @’ — r + RQ)

o/, v > v)

X =T

@, v). (44b)

In the proof, one shows that if

[ f & drar, v) < M, (458)
then

[ @ e, w) S ot (a5

Actually, a somewhat stronger condition holds, since
from Eq. (44b) it follows immediately that

ff A% d°rAxn (T, V) = fd“rdedesv’
X (1 — exp [—alr,r + B.Q, V)]

)xn(r V)
o(r, v)
In obtaining (45b), the exponential in Eq. (46)

was set equal to zero. If instead we approximate
Eq. (46) by the expression

X oft, vV — (46)

a—-eNe f f xo(t, V) dr &%’ 47

we see that an approximate limit for the convergence

of the Neuman series is

E< (1 —en). (48)
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Here 7 is the average optical chord length of the
system and ¢ is the average value of ¢(r, v).

This expression should give a rough estimate
of critical size since one can write

= §l, (49)
where & is the average cross section and [ is the
average chord length (4V/8). The averages of ¢
and ¢ are taken both with respect to r and v,

A second result which follows from the theorems
proved in the earlier section is that the solution
of the time-dependent transport or adjoint equations
can increase no faster than exponentially if the
source is of exponential order or less. Consider
first the transport equation. Let us write the source
in the form

Q(r, v, 1) = Qufr, V(). (50)

For simplicity we shall assume that Q, and ¢”
are bounded. Then we wish to examine the time-
dependence of the Neumann series, Eq. (19). Since
€, is bounded we have

= Mf(9), (51)
b S Ml [ 400) 1 (52
(1]
and in general
¢n S M(cmaxamax)n
% f an [ dt, - [ wwan 63
Now from Euler’s identity
[ an - f L) d,
f (¢ = ‘)), vy ar, (54
we have
S M(ClxOmax) Trax(E"/0Y). (55)
Thus
VS M, 3 Gl g
or
¥ = Mfuex €XD (ChnxTmaxl). (57)

Thus the time behavior of ¥ is asymptotically given
either by f(t) or by the exponential exp (¢” maxOmasl),
whichever is more important at large times.

If f(t) = ¢*', the integral in (54) can be evaluated
explicitly:
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(t t,)" ! at’ ’
o= [ C e a
t n—1
at T —ar
e fo _—(n — 1)!6 dr. (58)
Clearly,
eat a1 ——-a_— 1 . e—at
Lo = i 5= (=) 6o
so that
(cmsxo'mp,x) ( l)n ! a"_ (1 - e“”)
'l’n é M (n _ 1)' aan 1 @ » (60)
for n > 0. Then
¥ = M[l + el e
cl{a,axa'mn.x)" —1\* a_" (1 — e—at)]
X 2 g__n! Ca=t——) |, ©D
or
¥ = M + cfuOma/ (@ — ChirxOmar)
X (ea‘ —_ eﬁ"mnxdulxl)]’ (62)

where Taylor's theorem has been used to perform
the sum. We note that this limit is always positive.

A very similar argument can be used to delimit
the time behavior of the adjoint equation; we
shall omit it here.

APPENDIX

Theorems 16 and 17 may be proved in a different
manner from that used in the text if we assume that
no mechanism is present for neutron regeneration
other than ordinary elastic and/or inelastic scatter-
ing. [We note that in this case ¢(r, v) < 1.] In such
a case, we expect that the kernel o(r, v/ — v) obeys

the principle of detailed balance
VM@)o, vV = V) = vM@)o(r,v— V), (A1)

since in the absence of sources and sinks of neutrons,
an equilibrium should be approached. The equi-
librium spectrum M (v) is the Maxwell-Boltzmann
distribution

M@) ~v® exp [— MV /ET)]. (A2)

Consider now Eq. (37) of the text, with the
boundary condition, Eq. (38). Define a new depend-
ent variable by the relation

#(, v) = Fr, V)y(r, v), (A3)

where F(r, v) is some well-behaved but otherwise

K. M. CASE AND P. F. ZWEIFEL

arbitrary function to be chosen later. Then Eq. (37)
becomes

¢(v')
F)

v V ¢ + —= W‘b f Vo(v > V) d%’, (Ad)

with
o, v) =0, Qn,<0. (A5)

[The function F must be chosen so that Eq. (A5)
is still satisfied.]

If Eq. (A4) is multiplied by ¢(r, v) and integrated
over r and v we obtain, with the aid of Gauss’
Theorem,

%defd“vno vﬁr_v)

+ f d'r f d*wal(r, v)m

F,v)
= [[ @ ot v — v & F‘g"’(; )"') (46)
Next consider the identity
[6(r, v) — &(r, V)" = 0 (A7)
or
¢, Vo, V) < o', v) + o(r, v)'}.  (A8)

Then, by virtue of (A8), the right side of Eq. (A6)
may be written

ffd%dvva(t v —)v)Qﬁ_(l'_F_‘%iL(:TV_)_

2ff d% ' ”a(rF(v :SV) {8°(, v) + %, V)

(A9)
= —f d''o(r, v')e(r, v') q;((r :))
+1 [ avaww "<IF<" ;*)")Mr, V.  (ALO)

If we now choose F(r, v') = 1/M(v'), the second
term on the right of Eq. (A10) becomes

3 [@ evmerot, v - vga,
[@ dvobt@yote, v — vige,»), (A

by Eq. (A1). This becomes, upon integration over ',
1 [ dwht@yots, viot, v, w.

writing M (v) for 1/F(r, v) throughout Eq. (AS),

(A12)
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and using (A9), (A10), and (A12), we find
: f ds f oy vd(r, VM)
+ f d’r f dwM@)o(r, V)¢’ (x, V)

— f d’we(r, Ve, VoM @)¢’(r, v) < 0. (A13)

The first term on the left side of Eq. (Al3) is,
by virtue of (A5), nonnegative. The other two
terms combine to give

f & f EoMo)o(r, V6@, V]I — ofr, )],  (Al4)

which is always nonnegative since c(r, v) < 1.
However, Eq. (A13) tells us that the sum of these
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terms is nonpositive. Thus

¢, v) = 0, (A15)

and the theorem is proved. We see that a reactor
with no fuel can never be critical.

The uniqueness of the time-independent adjoint
equation for the case of no reproduction can be
proved in an entirely analogous fashion. This
method is a slight generalization of that used in
reference 1 for proving uniqueness of the one-speed
equations.
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representation. Some remarks are made on the
temperedness of the weight function for each term.

In Sec. IV we investigate the asymptotic behavior
of the weight function of the integral representation
for scattering amplitude in perturbation theory. It
is proved that the weight function vanishes at in-
finity for an infinite sum over certain graphs which
are much more general than the ladderlike graphs.
In Sec. V it is remarked that the above result gives
the analyticity of partial-wave amplitude in the
right half-plane of complex angular momentum ac-
cording to Khuri’s theorem.*

II. DGSI-TYPE INTEGRAL REPRESENTATION

In this section we discuss the DGSI-type integral
representation®:

ple, 2)

1 o
j; dzj;mdaa—zs— 1 =2t

where p(a, 2) vanishes unless
a2 za+ (1 —2)b, 2.2

a and b being certain constants. Replacing s — a by
$and ¢ — b by £, we get a simpler form

2.1)

' ” pla, 2)
fo dzj; daa—z§— 1 — 2t
For simplicity, we hereafter omit the hat *
Let DZ be the set of all points (s, t) such that
zs + (1 — 2)t can become real and nonnegative for
some z where 0 < 2z < 1. More explicitly, we can
write

2.3

DY = D*[s, ] \U D*[t,s] \J D*[s] U D*[{], (2.4)

where

D*[s,t]={s, ¢; Ims> 0, Im ¢t <0, Im st* > 0},
D*[s] = {s,¢; Ims = 0, Res > 0}. (2.5)

Let D,,, D[s, t], Dls] be the complements of D},
D*[s, t], D*[s], respectively. Then every function
represented as (2.3) is holomorphic in D,,. It was
proved in I that D,, is a domain of holomorphy.
It was also shown in I that if a function f(s, ¢) is
holomorphic in D,., and if it satisfies a certain bound-
edness condition, then f(s, £) can always be repre-
sented as (2.3). This theorem can be generalized
to the following form, which will be more convenient
for practical applications.

Theorem I. If {(s, ) satisfies the following three
conditions, then it can be represented as (2.3)
uniquely.

(i) It is holomorphic in
T See See. V.

NOBORU NAKANISHI

D, = {s¢t;Ims > 0, Im ¢ > 0},
and in

D_ =

(ii) Both boundary values on

E={s,t; Ins=Imt=0, Res<0, Ret <0},
2.7
from D, and from D_ coincide with each other.

(iii) There exist some positive numbers M and
8 such that

{8, t;Ims < 0, Im ¢ < 0}. (2.6)

Ifs, B < (Is] + [¢)~° (2.8)
in D, and in D_ whenever |s| 4+ [f| > M except
for the neighborhoods of D*[s] and D*{1].

Proof: For an arbitrary point (s, ) € D,, Cauchy’s
theorem leads to

16,0 = Grp § 7z § 7o 16, 6, @9)

where the contours lie in the upper half-planes.
Using the Feynman identity, we have

fs, ) = fl deyles + (1 — 2)t,2), (2.10)
where
, s, )
Vo, = (2)56d8¢dt "+ (1 -2t — o]
(2.11)

We infinitely enlarge the s’ contour in the upper
half-plane. Then, because of the condition (iii),
(2.11) becomes

‘l/(v Z) (2 7;)
+o+ie f(s’, t,)
! ’
X f_w as § a L @12
with € > 0 (infinitesimal) except for z = 0.
The integral (2.10) is rewritten as
1-h
(s, H = lim dzylzs + (1 — 2)t, 2), (2.13)

h—0+

since Y(zs + (1 — 2)¢, 2) is a continuous function
of 2in 0 < z < 1. Hence we consider ¢ in the region
h<z<1—h (h>0). We transform the inte-
gration variable ¢ into

w=gz' 4+ (1 —2¢. (2.14)

Then the w contour is dependent on s’. However,
since the integrand is holomorphic in Re w > e
except at w = v because of the condition (i), we can
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deform the w contour so as to become independent
of ¢'. Thus after integrating by parts we can ex-
change the order of integrations® to get

Vo, = ¢ aw L2 (2.15)

with
_ 1 1 e ,_E)_(,w—zs')
g(w’z)_(21ri)21—2f—m+;e dS é)wfs’l—z 4
(2.16)

provided that (2.16) is uniformly convergent. The
last statement can be shown in the following way.
For s nonreal, f(s, t) satisfies a dispersion relation
with respect to ¢ because of the conditions (i) and
(iii). Hence (8/d1) (s, t) vanishes at infinity faster
than |f/™*"° uniformly. This fact gives the con-
vergence of (2.16).

Now, on account of the conditions (i) and (ii),
the edge-of-the-wedge theorem® tells us that f(s, f)
is holomorphic in a neighborhood of E. Hence we
can analytically continue g(w, z) to

{w; Rew <0, |Imw| < ¢} (2.17)

by shifting down the s’ contour for Re s’ < 0.
We can further continue g(w, 2) to the lower half-
plane of w by deforming the s’ contour because of
the analyticity of f(s, {) in D_. Thus we see that
g(w, 2) is holomorphic except for w > 0. Moreover,
from the dispersion argument mentioned above, we
see that g(w, z) vanishes at infinity. Thus enlarging
the w contour infinitely, we obtain

Y0, 2) = f: do 2—@‘_—1—) 2.18)

with

pla, 2) = lim [gla + 7¢,2) — gla — i¢,2)].  (2.19)

€0+

Substituting (2.18) in (2.13), we see that f(s, #)
can be written as (2.3). The uniqueness of the

representation was proved in 1. Q.E.D.
Remark 1. From (2.15) we see
Y(w, 2) = 2riglw, 2). (2.20)

Remark 2. For evaluating (2.16), let w be real
and mnegative. Since we have shown that f(s, t) is

5 If the s’ contour is retained to a finite one, the w contour
is essentially dependent on s’ and then the order exchange of
the integrations becomes impossible. On this point the
previous proof given in I was incomplete.

¢ H. J. Bremermann, R. Oehme, and J. G. Taylor, Phys.
Rev. 109, 2178 (1958); F. J. Dyson, Phys. Rev. 110, 579
(1958). The variables in the theorem should be identified
with s + tand s — &.
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holomorphi¢ in D,,, the integrand is holomorphic
with respect to 8’ in Im s’ < 0 because

/

W2 s . W %
I =5 ° 1_zIms <0 (2.21)
[see (2.4) with (2.5)]. We thus obtain’

1 1

_ 1 ) ,w—zs’)
o9 = el [Car 2 (v, 2=E), @an)

where f,(s, t) is the absorptive part of f(s, ?), i.e.,

f.(s, ) = 2w0)™" lim [f(s + ¢, &) — f(s — de, B)].
o (2.23)

Remark 3. The condition (iii) excludes the single
dispersion terms. It also excludes such a function as

fs, ) = —(s+ 7", (2.24)

because (2.24) remains finite if s and £ become infinite
along a straight line parallel to the real axis but in
such a way that Re s + Re t = 0. Indeed, for this
example the integral (2.16) does not converge for
z = 3. However, (2.22) still gives the correct result
if we take it into account the contribution from the
infinity appropriately. Namely, putting 8 = 1/z in

o, 2) = (2ri)" f a0 + (1 — 2)5), (2.25)

we have

gw, 2) = (2mi)~" fo T dr e + 1 — 2)

= —@2r) w51 — 2. (2.26)

The above situation can happen in (2.3) only when
p(a, z) contains a (d-like) singularity, independent
of @ in 0 < z < 1. Fortunately, such a situation
cannot occur in perturbation theory.

Remark 4. If instead of the condition (iii), |f(s, £)]
does not exceed (|s| + [£)¥°, then in (2.11), ¥(», 2)
should be subtracted by N times. The final result
is given in (4.11) of 1.

III. INTEGRAL REPRESENTATION FOR SCATTERING
AMPLITUDES

In this section we consider the integral repre-
sentation for scattering amplitude:

! ® pra(et, 2)
./; dzf_mdaa—zs—(l—z)t

7 This formula was given also in 1.

® Main results in this section were reported in “Integral
Representation for the Scattering Amplitude” (Institute for
Advanced Study, Princeton, New Jersey, 1963) (unpub-
lished). The author was indebted to Dr. H. Araki for valuable
discussion on the proof of Theorem II.
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! ® p23(ﬁvz)
+f; dzf_mdﬁﬂ—zt— (1 —2u
! ® p3l(7vz)
+[D dz_[_mdyy_zu_ G 6D

where the weight functions p.,, p.3, and ps, vanish
unless

a>za+ (1 —2)b,
B 2z2b+ (1~ 2,
y>z + (1 — 2a, (3.2

a, b, and ¢ being certain constants. As is well known,
between s, f, and u there holds an identity

s+ t+u=d, (3.3)

where d stands for the sum of the squared external
masses.
As before, we put
§=s—a, i=t—-0b d=u-—ec,
A=a+t+b+c—d,

and omit the hat for simplicity. Then (3.1) reduces to

F(s,t)s‘/:dzj;mda

(3.4

pi2(a, 2)
a—zs— (1 —2)t

! ” p23(B, 2)
+ [ il

+ fol de fom dy == z’;“(_“"(j) @9
with
s+ t+u= —A. (3.6)
We assume
A>0, (3.7)

which is satisfied in almost all practical cases (e.g.,
equal-mass, N — N, = — N, ete.).

It is evident that the function F(s, ¢) defined by
(8.5) is holomorphice in

D = D, D,,N D,,. (3.8

Our purpose in this section is to investigate its in-
verse problem as in Sec. II.
Lemma 1. D*[s, t], D*[t, sl, D*t, u], D*[u, {],
D*[u, s], D*[s, u], and
D% = D*[s] U D*[t] \J D*[u]
are mutually disjoint with one another.
Proof: Tt is evident that D*[s, {] is disjoint with

D*[t, s], D*[t, u), D*u, s|, D*s], and D*[t]. First,
consider D*[s, #] M D*[u, ). For any point (s, )

3.9

NOBORU NAKANISHI

belonging to it, we have

Imi< 0, Imst*> 0, Imut*> 0, (3.10)
on account of (2.5). Hence
0 < Im (s + wi*x
= —TIm (¢ + Nt¥ = —x Im ¢* < 0. (3.11)

This is self-inconsistent. Thus D*[s, #] N D*[u, {] = ¢.
D*[s, f] M D*[s, u] is quite similar. Finally, consider
D¥[s, {] M D*[u], for which we have

Ims>0, Im¢t <0, Imst* >0, (3.12)
Imu=—-Im@E+ 9 =0 Reu>0.
Hence
s=8 +w t=1t—w v>0, (3.13)
and
Imst* = Im (s, + )& + ) = v(sq + &) > 0,
(3.14)
so that
S0+t 2 0. (3.15)
On the other hand, Re u > 0 leads to
A= (s + &) >0, (3.16)

which is evidently incompatible with (3.15). Thus

D*[s, t] N\ D*¥u] = ¢. Q.E.D.
Lemma 2.
D,V (D,N D,) = D[s] N\ D[{. (8.17)

Proof: Consider the complement of the left-hand
side:

(3.18)
Using (2.4) and Lemma 1, we can easily see
D*[¢] C DY, N D, C D*[s] U D*[4], (3.19)
D*[s] C D¥, M D% C D*[s]\U D*[1].
From (3.18) and (3.19) we get
DY, N (DY, U DY) = D*[s] U D*[], (3.20)
which is equivalent to (3.17). Q.E.D.

Theorem II. If F(s, t) is holomorphic in D, it can
be decomposed into

F = j12 + f23 + faly

where fy,, f23, and fa, are holomorphic in D,,, in D,.,
and in D,,, respectively.
Proof: We shall make use of the following theorem

(3.21)
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which follows from Cartan and Serre’s Theorem B
and Leray’s lemma, on the Cech cohomology.®

If { is holomorphic in D, M D,, and if D,, D,,
and D, \U D, are domains of holomorphy, then
there exist such functions f, and f, that

f=hHh+t, (3'22)

where f, and f. are holomorphic in D, and in D,
respectively.

From I we know that D,, and D,, N\ D,, are
domains of holomorphy. Furthermore, because of
3.17, D, Y (D,, N D,,) is also a domain of
holomorphy. We can therefore decompose F into

F =1+ (3.23)
where f{, and f, are holomorphic in D,, and in
D,, N D,,, respectively.

In next step, we must use some trick because
D,, \J D,, is not a domain of holomorphy. Since

f5 is naturally holomorphic in D, it can be de-
composed into

fo = fis + fii, (3.24)

where {5 and f{/ are holomorphic in D,, and in
D., N\ D,,, respectively. Accordingly f}/ is holo-
morphic in

(Dtu m Dua) U (Dul n Dat) = Du: n D[t]
= D, N D,, (3.25)

on account of (3.17) and (2.4), where D, stands for
the Mandelstam domain D[s] M\ D[] M D[u]. Since
D.., Do and

D,,\J D, = D[s] "\ D[u] (3.26)
are domains of holomorphy, fi; can be decomposed
into

5=+ 1, (3.27)

where f;, and f© are holomorphic in D,, and in D,,
respectively. Finally, it is well known that f® can
be decomposed into

O =10 IR+, @2

where 12, {53, and {5}’ are holomorphic in D[s] N DIt}

D] M Dlu}, and D[u] M DIs], respectively. Thus,
putting

foo =1+ ﬁ?), (3.29)

we get the desired result (3.21). Q.E.D.

Unfortunately, we do not yet succeed in proving

9 H. Cartan and J. P. Serre, “Séminaire sur les fonctions de

plusieurs variables,”’ (Paris, 1951-1952, 1953-1954) (unpub-
lished). See also reference 9 of 1.
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that, if F vanishes at infinity in D, then f;; vanishes
at infinity separately. Hence, at present the tempered-
ness of p;;(e, 2) is an additional requirement to the
function F.

We give the following remarks on the tempered-
ness of py;.

(i) For a renormalizable theory, they are bounded
in any finite order of perturbation theory.

(ii) If they are positive definite, then their be-
havior at infinity is the same as that of the absorp-
tive parts of the scattering amplitude in the physical
regions. This is easily seen from the relations

Fis, 0

=t [ dsbes + (1 = Dpusles + (1 — A1, )

+ 7 fol dz6(zu + (1 — 2)8)pu(eu + (1 — 2)s, 2),
(3.30)

fors > 0,¢t <0,u <0, ete.

(iii) If the Mandelstam representation'® is as-
sumed, p;; are, of course, tempered because of
Theorem 1.

IV. ASYMPTOTIC BEHAVIOR OF THE WEIGHT
FUNCTION

It will be an important problem to find the
asymptotic behavior of the weight function, which
we investigate by means of perturbation theory in
this section. It is well known, however, that the
whole, unrenormalized perturbation series containing
scalar propagators only is divergent for any non-
trivial value of the coupling constant.” Hence, we
must content ourselves with considering some sub-
series which contains infinitely many Feynman
graphs.

The following argument will be equally applicable
to the vertex function, the production amplitude,
etc., but for definiteness we consider the scattering
amplitude. Let G be a connected Feynman graph,
in which N is the number of internal lines, m being
the number of vertices. Then the number of inde-
pendent circuits is given by

n=N-m-+<+1. 4.1

If there are scalar particles only, the scattering

0 8. Mandelstam, Phys. Rev. 112, 1344 (1958); 115
1752 (1959). v (1958); 115, 1741,
11 C. A. Hurst, Proc. Roy. Soc. (London) A214, 44 (1952) ;
Proc. Cambridge Phil. Soc. 48, 625 (1952). W. Thirring,
Helv. Phys. Acta 26, 33 (1953). M. A. Petermann, Hely,
Phys. Acta 26, 201 (1953). See also N. Nakanishi, Progr,
Theoret. Phys. (Kyoto) 17, 401 (1957).
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amplitude corresponding to G is given by*’

Fs,8) =N — 20 = D! f deU™X(V — i)™+
4.2)

in the Feynman parametric form. Here we have
assumed N > 2n, and the notations are as follows:

0 <c < A"/(4m)™, 4.3

where A is the largest coupling constant;

fdxs j:dx, [:dxyé(l — éx,),

where z, is a Feynman parameter corresponding to
an internal line 7;

U= Y z,%, - (4.5)

where the summation goes over all possible sets
{#1, vs, -+, v.} such that the corresponding Feyn-
man integration momenta p,,, P, - , P,, are
linearly independent;

(4.4

an?

V":‘me ‘Zi’th‘—i'ABS“‘fAct—fADu
4.6)
with
s+t+u=i‘M?, 4.7)
and i
0<<t, h=A4,B,C,D,AB,AC,AD), (4.8

where m; and M; are an internal mass and an ex-
ternal one, respectively.

The corresponding weight function p5 (a, 2) is
defined by

prale, 2) = cfdxi__l—:w];;i-_:m

A w-2m-3f f ) __g )
X 8 (a g+h5(z g+ n
with
f= thmf - ; (¢ + KAD)MK

4.9

9= {ap — $an,
h = f'Ac - g-AD:

¢ = 0¢un — tan)0(fac — £an)U™

2 Original Proofs are: N, Nakanishi, Progr. Theoret.
Phys. (Kyoto) 17, 401 (1957); Y. Nambu, Nuovo Cimento 6,
1064 (1957); K. Symanzik, i’rogr Theoret. Phys. (Kyoto)
20, 690 (1958). Reviews and further proofs are: N. Nakanishi,
Progr Theoret. Phys. (Kyoto) Suppl. 18, 1 (1961), Part I;
Progr. Theoret. Phys, (Kyoto) 26, 337 (1961) T. Kmoshlts,
J. Math. Phys. 3, 650 (1962); Y. Shlma.moto Nuovo Cimento
25, 1292 (1962).

(4.10)
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Let ¢(z) be an arbitrary function continuous in
0 € z € 1. Then we have

[ e [

— o (N — n—-l)?fdx

Plz(a 2)

i ‘b(ﬁ]-%)' 4.11)

if f > 0, or more precisely, if we introduce the follow-
ing assumption for an infinite set, ®, of graphs.

Assumption A. There is a positive constant a
such that

YV@E ®:f>a, when ¢ 0. (4.12)
Now, let
b = max |¢¥(2)]. (4.13)
Then we have
[ a9 [ % e,
A"b dz ‘

e (N 20 — I} =5 4.14
- (41r)2naN—2ﬂ( n ) U ( )

We further impose the following conditions on &.
Assumption B. There is a constant o for all
G & & such that

() YVHCG:2nH)/NH) <o <1, (4.15)

where H stands for a nontrivial subgraph of G,
N(H) and n(H) being the N and the n of H, re-
spectively;

(i) 3k :oN — 2n <k, (4.16)

where k is an integer independent of the order m.
Lemma. If G satisfies (4.15), then one has

.
v > 11 &

i=1

for 0<z, <1. (4.17)
Proof: Since numbering of lines is not specified,
we may assume

12>y 2 2y = 2 n 20, (4.18)

without loss of generality. We choose a set of lines
{vi, ¥y +++, 7.} in such a way that », = N, and »,
is the largest number among those in which p,, is
linearly independent of p,,, .-+ , p,,_,. Then, of
COUTSE, Ps,, Poyy **° , Ps. are linearly independent
so that

xl’ix’: et xl’n 6 U, (4:.19)

namely,

U > a2 22 - 22, (4.20)
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Let Cy, C,, --- , C, be the circuits along which
Dusy Pray **° , Dv, flow, respectively. Let
i—1
H,=\UC,... (4.21)
1=0
By assumption we know
=2nH;) <o-NH) (j=1,2,---,n), (422
so that
22 -2l xl > el a2, (4.29)
with
(7] EN(Hi) —N(H:'—l) (.7=21 e ,N), (424)
o = N(Hl).
Furthermore, we have
Vi€ H; iz, 2z, (4.25)

becauseif J4:x,, < z;, thens > v;,and7s & G — H,,
i.e., p; is independent of p,,, ---, p,,—,; and the
existence of such a line 7 is inconsistent with our
choice of »;. Hence

Zol Xt > Hm

t=1

Collecting (4.20), (4.23), and (4.26), we get the

(4.26)

an
x“ PR

desired result (4.17). Q.E.D.
We thus have
N
f dzU™% < f dz 11z (4.27)
i=l

The generalized beta-function formula leads to

f dz ﬁx:" = [r1 — OIY/T(VA = o). (4.28)
Accordingly, we obtain
& — 20— 0! [ T 1m0 - o ok
< [r@ — )"V - 2w (4.29)
on account of (4.16). Since
N < m/(1 — }0), (4.30)

and
N - 2n)' < m* < 2",

for m large, from (4.29) we can see that the right-
hand side of (4.14) behaves at most (const)™. There-
fore, if the number of mth-order graphs belonging to
& increases at most as (const)™, and if the coupling
constant A is sufﬁciently small, then we have

Plz(a 2)
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f d29(2) f e, D) < @, (431)
where
prale, 2) = g pia(@, 2). (4.32)
The above inequality shows
praler, 2) = o(1), (4.33)

for « — o if we assume that p,3(e, 2) does not oscil-
late infinitely. Without such an assumption, exactly
in the same way as for (4.31), we can prove

. (4.34)

[ " a2y [ da plalet, ) <
0 Jo T Ja—as— (1 - 2]
where Rer > land |« —2s — (1 — 2)t| > a > 0
for p5(a, 2) = 0. It will turn out that (4.34) is
sufficient for practical applications.

Now, it remains to investigate in what cases
Assumptions A and B are satisfied. Assumption A
is certainly satisfied if a nonforward dispersion rela-
tion can be proved in perturbation theory. For
instance, in the equal-mass case we know an in-
equality™®:

N D
;zi#z - quA (¢ + .(AD)'zl‘z

- (g-AB - §'AD)'4M2 - (fac - fAD)"lllz > 0. (4-35)
Hence when ¢ > 0 and & > 0, we have

2f > Xz’ = 17, (4.36)
so that a = 3,°.

Assumption B is satisfied if for any G of & there
are 3-vertices only and no self-energy parts. Let r(H)
be the number of external lines of H. Then, in the
present case, we have

n(H) = ym(H) — §r(H) + 1.
Since r(H) > 3,
2n(H)/N(H) < § = (4.38)
Furthermore,
oN —2n=2<1=kF. (4.39)

Thus Assumption B is satisfied. Even if there are
4-vertices, Assumption B can be still satisfied if
there are also 2-vertices so as to prevent n/N from
increasing.

1 For instance, N. Nakanishi, Progr. Theoret. Phys.
(Kyoto) Suppl. 18 1 (1961), Part III. See also reference 3.
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V. ANALYTICITY IN COMPLEX ANGULAR-
MOMENTUM PLANE

Recently, it has become of special interest to
investigate the analyticity in complex angular-mo-
mentum plane of the relativistic scattering ampli-
tude. A number of authors' have made use of the
Mandelstam representation,'® which is known to be
valid only for very special kinds of graphs. On the
other hand, Polkinghorne'® and Federbush and
Grisaru'® have obtained the Regge behavior by
summing the generalized ladder graphs in pertur-
bation theory. They assume that the asymptotic
behavior of the sum is given by the sum of the
leading terms, but plausible counterexamples against
this assumption can be easily found.'” Under the
same assumption, Bjorken and Wu'® have obtained
a non-Regge behavior by summing the so-called
truss-bridge graphs in which three-particle inter-
mediate states are important.

Now, in Sec. IV we have rigorously proved that
when the Lagrangian density is given by

= —1[(8¢/02,)" + u’¢] + ¢, (5.1

an approximate scattering amplitude F*(s, f) can
be represented as (3.1) with o, 8, v > 44°° if A
is sufficiently small. Here F*(s, t) is a sum over
such a subseries that there are no graphs containing
self-energy parts and that the number of mth-order
graphs increases at most as (const)™. It is evident
from (3.1) that

F%s, ) >0 as (5.2)

when s is fixed. According to the Regge analysis,
(5.2) suggests that the partial-wave amplitude cor-
responding to F*(s, t) is a holomorphic function of
the angular momentum ! in the right half-plane.
Khuri has pointed out that this is indeed the case
as is shown by applying his theorem,'® from which
the following statement follows.

HES

4 For instance, V. N. Gribov, Zh. J. Eksperim i Theor.
Fiz. 41, 1962 (1961) [English transl.: Soviet Phys.—~JETP
14 1395 (1962)]. M. Froissart, unpublished talk at La Jolla
Conference (1961); Phys. Rev. 123, 1053 (1961); A. O.
Barut and D. E. Zwanziger, Phys. Rev. 127, 974 (1962),

15 J. C. Polkinghorne, J. Math. Phys. 4, 503 (1963).

16 P, G. Federbush and M. T. Grisaru, Ann. Phys. (N. Y.)
22, 263, 299 (1963).

17 For example,

§ (log ”'"(1 + ?;i!")

m=0 mli

18 J, D. Bjorken and T. T. Wu, Phys. Rev. 130, 2566

(1963).
12 N. N. Khuri, Phys. Rev. Letters 10, 420 (1963), and

Phys. Rev. 130 429 (1963).
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The rightmost singularity of the partial-wave
amplitude in Re I > —1% is located at the same
position as that of the coefficient in the power-
series expansion with respect to .

In our case we have®’

F*s, ) = 3 fis, D' + 2 fis, Du',  (5.3)
1=0 i=0
except for a neighborhood of s > 44° where

1 « —_ 1K
f dz f d& (1 Z) plZ‘(flly Z)
h] 4pu?

(@ — 29)

fils, 1)

R (22 — 1)'p2x(8, 2)
+ j; dz j;”‘ dﬂ [6 — (1 — Z)(4}J.2 _ s)]H-ly

fi(s, 1) being similar. It is evident from (4.33) or
(4.34) that f% and % are holomorphic in Re { > 0
when continued in the natural way.

Clearly our subseries is much more general than
that of Polkinghorne and others. Especially, graphs
in the former may contain many intermediate states
for the crossed channels. Our result is, however, not
inconsistent with the conclusion of Bjorken and Wu
because their example does not satisfy Assumption B
and our analysis does not give the exact location
of the rightmost singularity in the I plane. But we
may say that the three-or-more-particle intermediate
states do not have a very important effect on the
analyticity in the [ plane.

Note added in proof. The envelope of holomorphy
of D, U D_ U E was investigated by Glaser by
using a parametric dispersion relation under the
assumption of boundedness. [See A. Bottino, A. M.
Longoni, and T. Regge, Nuovo Cimento 23, 954
(1962); A. Bottino and A. M. Longoni, Nuovo
Cimento 24, 353 (1962)]. It is easily shown that his
result is naturally identical with D,,.

(5.4)
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A new class of singularities associated with the trajectories and residues of particular Regge poles
is investigated. It is shown that the singularities are associated with properties of asymptotes to
Landau curves. One of the singularities corresponds to the singularity of the Regge amplitude dis-
covered recently by Islam, Landshoff, and Taylor. The only singularities affecting physical asymp-
totie behavior correspond to diagrams which have all three Mandelstam spectral functions.

1. INTRODUCTION

ERIES expansions have recently been given*'*'**

for Regge-pole trajectories a(s) which are de-
rived from evaluating the asymptotic behavior of
Feynman diagrams. The terms in these series con-
sist of integrals having a structure similar to that
associated with self-energy diagrams. They therefore
exhibit the expected s-channel normal threshold sin-
gularities. However, extra factors occur in the inte-
grands which have no counterpart in the Feynman
integrals associated with self-energy diagrams. These
factors produce further singularities of a(s), some of
which are on the physical sheet. This is discussed
in Sec. 2.

Recently Islam, Landshoff, and Taylor® have
found an unexpected singularity of the Regge ampli-
tude a(l, s). Their argument is based on the proper-
ties of the asymptotes of a certain Landau curve,
the leading curve of the tetrahedron diagram. In
Sec. 3 it is shown that this is a particular example of
the class of singularities discussed in Sec. 2. The
equivalence is established by means of an algorithm
for calculating asymptotes to Landau curves.

In Sec. 4 the analytic properties of the coefficient
function B(s) are discussed. The terms in its series
expansion contain integrals with structures similar
to those of vertex parts. The singularities will, there-
fore, include s-channel normal thresholds and, in ap-
propriate circumstances, anomalous thresholds. In
addition, there are further singularities which again

* The research reported in this document has been spon-
sored in part by the Air Force Office of Scientific Research,
OAR, through the European Office, Aerospace Research,
United States Air Force.

1], C. Polkinghorne, J. Math. Phys. 4, 503 (1963).

2 P, G. Federbush and M. T. Grisaru, Ann. Phys. (N. Y.)
22, 263, 299 (1963).

3 1. G. Halliday, to be published (Department of Applied
Mathematics and Theoretical Physics, Cambridge Univer-
sity preprint).

+'N. H. Fuchs, J. Math. Phys. 4, 617 (1963).

5 J. N. Islam, P. V. Landshoff, and J. C. Taylor, Phys.
Rev. 130, 2560 (1963).
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can be associated with the asymptotes to Landau
curves.

2. SINGULARITIES OF REGGE TRAJECTORIES

We consider those contributions to the series ex-
pansions of Regge-pole trajectories which are asso-
ciated with ladderlike iterations® since it is these
which produce singularities which are most simply
associated with four-point Landau curves.

A typical contribution is associated with a Feyn-
man diagram like Fig. 1. The o’s and B’s are the
Feynman parameters associated with the two n
lines® and the remaining Feynman parameters are
denoted by «.. The blob must not contain within
itself an m line with m < n. The number of lines
joining each point of an n line to the blob can be
arbitrary. The coefficient of ¢ in the denominator of
the Feynman integral associated with Fig. 1 is
denoted by g(a, 8, v). This diagram gives a con-
tribution to «(s) which contains the function

4.(9)

_ f‘dadﬁd'y 2 a=1 > B-D (T y=1
0 5@, B, v)]"

)
ldlv, 91"

where § is formed from g by deleting all products
involving more than one « and one B, and ¢ and d
are the numerator and denominator functions asso-

M

¢ More complicated iterations also

ive Regge poles:
references 3 and 4. & BE¢ poles; see

1393



1394 J.

Frg. 2. The seli-
energy part corre-
sponding to Fig. 1.

ciated with the self-energy part, Fig. 2. The ex-
ponents z and y can be calculated but are irrelevant
to our discussion.

In addition to normal threshold and second-type
singularities, 4,(s) has singularities given by

M@, B, v) = 0, @)
dly,s) =0, @)
za;(dg/da;) = 0, i=1,2 .-+ ,n, 4
M3.(8g/0B) =0, ¢=1,2 --- n, (5)

v\ 3§/dv:) + (8d/dv.)) =0, 2 =1,2,---, (6)

where A is a Lagrange multiplier.” A singularity can
only occur in a Regge trajectory associated with the
physical asymptotic behavior if it corresponds to
positive values of &, §, v. In order to satisfy Eq. (2),
in these circumstances it is necessary that Fig. 1
should be a diagram not having a proper dual (i.e.,
it should have all its three Mandelstam spectral
functions nonzero). A simple diagram which will
give a singularity of this type for physical a(s) is
given by Fig. 3 for which

g = aBlyrys — vavs)- @)

This is the diagram considered by Islam, Landshoff
and Taylor.?
3. ASYMPTOTES TO LANDAU CURVES

The asymptotes of some simple Landau curves
are given by their normal threshold contractions
but it is known that not all asymptotes are normal
thresholds. In this section we will develop a method
for finding asymptotes of the leading Landau curve
associated with Fig. 1.

The denominator function of the corresponding
Feynman integral can be written in the form

D = g®t + 8¢, 9, )

where £ is used as a generic symbol for the ¢’s, 8’s,
and v’s. The leading Landau curve is given by

(')D/GE;:O, 7:=ly2y"' ’ (9)

which has as a consequence

7 See lectures by J. C. Polkinghorne in 1961 Brandeis
Summer Institute Lectures in Theoretical Physics (W. A.
Benjamin Company, Inc., New York, 1962), Vol. 1.
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ty
Y,
F1a. 3. The tetrahedron a 2 8
diagram. s I X "3
74

D =0. (10

If (9) is to be satisfied as ¢ tends to infinity, then
either some £’s tend to infinity, or the g;(£) tend to
zero. We consider the latter possibility.

We write

t =t/ eh))
o; = ag, (12)
B; = 5{2- (13)

Then
D = gt + 5, (14)

where
j=g/7. (15)

Equations (9) may be written

t'(8§/0m;) + 2(38/0a;) = 0, (16)
t'(0§/9B:) + 2(38/98,) = 0, (17)
t'(0g/dv.) + (88/dv.) = 0. (18)

Putting 2 = 0 to correspond to ¢ infinite, § and its
derivatives become identical with § and its deriva-
tives, and § and its v derivatives become identical
with d and its v derivatives. Thus a point at infinity
in ¢ on the Landau curve is given by

t'(9g/oa;) = 0, (19)
t'(89/98.) = 0, (20)
t(97/9vs) + (6d/dv.) = 0. @n

The function § is homogeneous of degree one in &;
(and also in 8;), so that (19) [or (20)] implies

g=0. (22)
Then from the analogue of (10) we deduce also that
d=0. (23)

Equations (19)-(23) reproduce the leading singu-
larity of Eqgs. (2)-(6) with A = ¢’. The other singu-

td

¥16. 4. A diagram contributing to “
B(s). S 1%2



SINGULARITIES OF REGGE TRAJECTORIES

larities correspond to asymptotes of lower-order
Landau curves.

" Normal threshold asymptotes correspond to ¢’ = 0,
that is, to writing

t=t'/e, B: = B (24)

This method can also be used to search for
asymptotes not parallel to the s, ¢, or u axes since
the function D is linear in s, ¢, u, and so it is equally
possible to consider any linear combination of s, ¢, u
tending to infinity.

a; = 61,-2,

4. SINGULARITIES OF §g(s)

A typical diagram contributing to B(s) is shown
in Fig. 4. It is bounded by an n line, and the blob
must not contain within itself an m line with m < n.
The coefficient of ¢ in denominator of the Feynman
integral associated with Fig. 4 is denoted by ¢g(«, 7),
where o denotes the Feynman parameters of the
n line and v the remaining Feynman parameters.
This diagram gives a contribution to B(s) which
contains the function

_[fdady (X a—-D 2y —1
B = | 0@, VT

eI

X ldy, 91
where ¢ and d refer to the vertex part obtained by
contracting the n line, and § is formed from ¢ by
omitting products with more than one «. In addition
to the normal, anomalous, and second-type singu-
larities of the associated vertex part, B,(s) has
singularities given by

(25)

A\ =0, (26)

d=0, @n

A, (0§/0&) = 0, i =1,2, --- n, (28)

vA07/dv) + (8d/dv)) =0, i =1,2,--- . (29)

These can be associated with asymptotes of the
Landau curves associated with Fig. 4 and calculated

1395

by writing
t=1t/z, (30)
a; = Q2. (31)

5. DISCUSSION

It is not difficult to see from a more general view
point how the singularities discussed in this paper
arise. The Froissart—-Gribov definition® of a(f, s)
contains integrals of the form

[ o900 €

where 2 is the scattering angle and p is a ¢ or u-
channel discontinuity. The expression (32) will have
an end-point singularity for a value of s for which
a singularity of p oceurs at 2 = . Such values of s
correspond to asymptotes to Landau curves. The
normal threshold singularities in s occur in this
way since p itself does not have s-channel normal
thresholds. The singularities of p on the physical
sheet include the curves of virtual singularity” which
are the boundaries of Mandelstam spectral functions.
It is known that these correspond to positive o’s.’

The analysis of this paper confirms the existence
of the singularity discovered by Islam, Landshoff,
and Taylor’ and shows that it is a member of a
wide class of singularities. We are also able to show
that these singularities occur in the trajectories and
residues of particular Regge poles.

The only singularities which are relevant to physi-
cal asymptotic behavior correspond to Feynman
diagrams which have three Mandelstam spectral
functions. They provide, therefore, another example
of a phenomenon associated with a relativistic
theory which will not have a counterpart in non-
relativistic potential models.

8 M. Froissart, Proceedings of the La Jolla Conference
1961 (unpublished); V. Gribov, Zh. Eksperim. i Teor. Fiz.
41, 1221 (1961) [English transl.: Soviet Phys—JETP 14,
871 (1962)].

® This follows from the work of T. T. Wu, Phys. Rev.
123, 678 (1961).
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Contributions to the asymptotic behavior of Feynman integrals are evaluated which correspond
to pinches in the interior of the hypercontour of integration. It is shown that they give the Gribov-
Pomeranchuk phenomenon and Regge cuts. A set of diagrams is investigated which gives a Regge

cut on the physical sheet.

1. INTRODUCTION

IGH-energy behavior which is Regge pole-like
has recently been discovered in a wide class
of perturbation-theory diagrams.'™ The method has
been used to extend Regge behavior to production
processes® and to exhibit a new class of singularities
of particular Regge trajectories.®
Feynman integrals only give a significant high-
energy contribution from regions of the hypercon-
tour of integration over the Feynman parameters
in which g(a), the coefficient of the asymptotic
variable ¢, vanishes. Moreover, these must be regions
which cannot be avoided by some permissible dis-
tortion of the hypercontour. In I the regions dis-
cussed were edges of the hypercontour given by the
vanishing of a number of o’s. All Regge-pole be-
havior that has been discovered in perturbation
theory corresponds to these edge contributions. Since
the edges are always fixed parts of the hypercontour,
the corresponding asymptotic behavior will be found
on all Riemann sheets of the Feynman amplitude.
In addition to the edges, there may be other
regions of the hypercontour in which the coefficient
g(a) vanishes and which give a contribution to the
asymptotic behavior because the hypercontour is
trapped there by pinches as { — . It is charac-
teristic of pinching configurations that they only
contribute to certain Riemann sheets of the func-
tion so that the corresponding asymptotic behavior
will not be found on all sheets of the Feynman ampli-
tude. The Feynman integrals which give physical

* The research reported in this document has been spon-
sored in part by the Air Force Office of Scientific Research,
OAR, through the European Office, Aerospace Research,
United States Air Force.

1J. C. Polkinghorne, J. Math. Phys. 4, 503 (1963).
Referred to as I.

2 P. G. Federbush and M. T. Grisaru, Ann. Phys. (N. Y.)
22, 263, 209 (1963).

3 1. G. Halliday, Nuovo Cimento (to be published).

4 N. H. Fuchs, J. Math. Phys. 4, 617 (1963).

5 1. G. Halliday and J. C. Polkinghorne, Phys. Rev. 132,
852 (1963).

¢ J, C. Polkinghorne, J. Math. Phys. 4, 1393 (1963),
previous paper.

asymptotic behavior correspond to integrations over
undistorted positive « contours. In these circum-
stances g(a) can only vanish away from an edge for
diagrams not possessing a proper dual, a class which
includes all amplitudes with all three Mandelstam
spectral functions nonzero. These are just the dia-
grams which do not have a simple analogy to po-
tential theory, and it is therefore not surprising that
the corresponding asymptotic behavior corresponds
to fixed singularities’ and moving cuts.*™*

On a given Riemann sheet of the amplitude, its
asymptotic behavior is given by the combination
of the contributions from the edges and the pinch
contributions. The problem of determining what con-
tributions oceur on a given Riemann sheet is equiva-
lent to determining what Landau singularities'* occur
at t = o« for all s on this sheet.

In this paper we analyze the form of some typical
pinch contributions. In Sec. 2 the simplest illustra-
tive example is given, and this is used to show how
the Gribov-Pomeranchuk (G-P) phenomenon’ oec-
curs in perturbation theory. In Sec. 3 it is pointed
out that the A~-F—S-type cut®*®"** must occur on un-
physical sheets, and it is shown how this arises in
perturbation theory. Finally in Sec. 4 the analysis is
used to show the existence on the physical sheet of
cuts arising from a set of diagrams which has also
been discussed by Mandelstam."’

2. THE GRIBOV-POMERANCHUK PHENOMENON

A simple but instructive example is provided by

7V. N. Gribov and I. Ya Pomeranchuk, Phys. Letters 2,
239 (1962).

8 D. Amati, S. Fubini, and A. Stanghellini, Nuovo Cimento
26, 896 (1962).

% J. C. Polkinghorne, Phys. Rev. 128, 2459 (1962).

10 §, Mandelstam (to be published).

1t See lectures by R. J. Eden and J. C. Polkinghorne in
1961 Brandeis Summer Institute Lectures in Theoretical
Ph%/sics (W. A. Benjamin and Company, New York, 1962),

ol. I.
2 J C. Polkinghorne, Phys. Letters 4, 24 (1963).
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HIGH-ENERGY BEHAVIOR IN

If none of the end points of integration are zero,
it might appear that I ~ ¢ as t — . It is not
difficult to evaluate I exactly. The answer has the
form

_ 1 Io (z.y:t + d)(xzy2t + d)
n+ l)fdﬁl & @12t + d)(xay1t + d)

where R(f) is a rational function of ¢ which need
not be given here explicitly. As ¢ — «, the logarithm
tends to log 1. If the principal branch of the log-
arithm is chosen, cancellations between the first and
second terms of (2) make I ~ t™ *ast — , as
expected. However, if a branch is chosen on which
log 1 = 2rmi (m a nonzero integer), the leading
agymptotic behavior is

I~ —[2rmi/(n + DI} 3)

If the lower limits x; and y; are both greater than
zero, 5o that the z and y integrations are over positive
values only, the principal branch is the correct
choice. If, however, z; and y, are both less than zero
so that both z and y integrations pass through their
origins, then ast — 4 « 4 ¢, the two factors in the
numerator of the logarithm both tend to 4+ « + ¢,
and the two factors in the denominator both tend
to — o — te. The correct branch is then given by
m = —1, and the asymptotic form is changed.

It is not difficult to understand why this is so.
In order to discuss ¢ = «, we make the change of
variable

+E(@®), (2

t =t/
A pinch singularity of I occurs when
zyt' + 2d = 0,
yt' = 0,
zt’ = 0.

€

These conditions are satisfied by 2 = 0 (or ¢ = =),
and z = y = 0. If the contours of z and y integra-
tions pass through their origins, the contour will
actually be trapped at x = y = 0 as t — «, and
the resulting singularity manifests itself in the change
of asymptotic behavior.

This pinch can be readily verified explicitly. After
the y integration has been performed, we obtain

N S dx[__lq_
(n+ Dt J,, 2(zy.t + d)**!

1
e ©

The integrand of (5) has no pole at z = 0, but if
its two terms are considered separately, a convention

PERTURBATION THEORY. II 1397
12
az b
F1a. 1. A diagram relevant o ay PAA
to the G~P phenomenon. s~
aq a}

for avoiding the seeming pole must be chosen. For
definiteness we choose a detour in the upper half-
plane. The first term has a pole at —dy;'t™" in the
upper half-plane which gives a pinch as { — » - 7e.
If the contour is pulled over the pole at + = 0 to
avoid the pinch, the residual contribution is

2mt/(n + D)id™.

No pinch occurs in the second term whose other
pole is in the lower half-plane. Had we chosen the
opposite convention for the z integration, the second
term would have given the pinch but the contri-
bution would have been the same.

This result is the principal analytic tool used in
this paper. It can be applied immediately to exhibit
in perturbation theory the Gribov-Pomeranchuk
phenomenon,” which states that complete scattering
amplitudes never go to zero more rapidly than ¢
in a fully relativistic theory. In order to apply the
G-P argument to asymptotic behavior in ¢ at fixed s,
it is necessary that: (i) the amplitude should have
a nonzero fu spectral function; (ii) it should satisfy
two-particle unitarity in s in some region. One
might expect therefore that the Feynman integral
corresponding to Fig. 1, which contains the two-
particle iteration of a diagram with a tu spectral func-
tion, would ~¢™' as t — o at fixed s. However, the
edge contributions to such a diagram’s asymptotic
behavior only give a contribution ~¢™* log® ¢."*
The coefficient of ¢ in the Feynman denominator
corresponding to Fig. 1 is zy, where

T = 03 — 00y,

©)

aloh — asal.

y:

The physically relevant integrations are over posi-
tive o’s, and so points with £ = y = 0 occur in the
interior of the hypercontour. The behavior of the
Feynman integral in the neighborhood of such points
may be approximated by an integral of the form (1)
for large values of ¢ and so one obtains the expected
£ behavior.

Further iterations give asymptotic behaviors

13 This point has also been noticed by P. G. Federbush

and M. T. Grisaru (private communication), and by G.
Tiktopoulos, Phys. Rev. 131, 2373 (1963).
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F1c. 2. A diagram of A-F-S type.

t! (log t)" which do not sum up into Regge poles.
These represent the occurrence of (n + 1)-fold
poles at | = —1. The total effect is an essential
singularity at = —1.

3. CUTS ON UNPHYSICAL SHEETS

The type of Regge cut proposed by Amati, Fubini,
and Stanghellini® is obtained by combining together
two Regge poles, or a Regge pole and an ordinary
pole. The simplest set of perturbation-theory dia-
grams which might yield this behavior is illustrated
by Fig. 2. These diagrams all have their asymptotic
behavior in the physical limit determined by the
edge behavior, and it has been pointed out'® that
this does not give a cut in the complete amplitude.
However, the discontinuity around the two-particle
normal threshold given by putting the lines corre-
sponding to a; and o, on the mass shell, does have
a cut. Therefore if ¢ — o on the unphysical sheet
generated by this two-particle normal threshold, the
asymptotic behavior corresponding to this cut will
be obtained. Since this is a sheet-dependent be-
havior, it must correspond to a pinch contribution.
In fact, it provides the simplest example of how
pinch contributions can give Regge cuts. In the
next section a more complicated example will be
discussed in which the same mechanism generates
a cut on the physical sheet.

In order to discuss the generation of cuts, a
standard form slightly more complicated than (1)
is required. It is given by

- [l [ [P g ©

After the z and y integrations have been performed,

I= f:n dﬂ[(n ¥ l)t(flit T

[(zyyy, + Bt + d][(zy. + Bt + d] :I
(@ ¥ Bt + dlleas + B+ d) T EE D |
®)

where R(G, t) is a rational function. Whether the 8
integration gives a different asymptotic behavior
than that obtained by inspecting the integrand will
depend on the behavior of the integrand near the

Xlog
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end point 8 = 0. Cancellations between the first
and second terms of the integrand show that no
change of asymptotic behavior results from the B
integration when the principal branch of the log-
arithm is chosen. However, when a branch is chosen
on which log 1 = 2m=i (m nonzero integer), then an
extra term appears in the integrand which

~[2rmi/n + DU[1/Bt + &), as 0. (9)

Such a term when integrated from 8 = 0 gives an
asymptotic behavior of ¢™°. This asymptotic be-
havior is associated with the occurrence at ¢ =
of a singularity given by pinches in the z and y
integrations, and an end point in the 8 integration.

If B is replaced by the produet 5, --- B8, and
each 8, is integrated from zero, the corresponding
asymptotic behavior will be

[2rmi/n(n + Dd"[(log §'7'/(1 — DI. (10)

This standard result can now be used to analyze
the asymptotic behavior of the Feynman integral
associated with Fig. 2. The coefficient of ¢ in the
denominator is given by™*

g = a,0,C + Py + o,P, + Q, (11)
where
C=0CL - L), (12)
P, = ; C(Ly -+ Liy)v: kII.ﬁ"’ (13)
P, = 2 w0 - L), (14)
0= Hacw
=1
-+ Z lI<IBl’Y,‘C(Li+1 Li—l)‘Yi }Iﬁh (15)
and C(L, -+ L,) represents the C function asso-

ciated with the graph composed of loops L, - - - L,.'*

On the unphysical sheet reached by crossing the
normal threshold cut corresponding to the lines
associated with «; and @, being on the mass shell,
the «, and a, integrations are along contours which
are bent back around the origin to negative values
of a; and @;. We may therefore expect that the new
asymptotic behavior found on that sheet is asso-
ciated with pinches in the o, and o, integrations and
end points in the B; integrations. The expression
for g can be written in the form

1 A convenient summary of results on the functions C
and D is given in R. J. Eden, Phys. Rev. 119, 1763 (1960).
15 Interpreting C(L, --- L,) = 1if ¢ < p.
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Cle, + P.C ey + P.CTY + Q — P.P,CTY,  (16)

and the &, and a, pinches occur at —P,C™', and
—P,C™", respectively, corresponding to negative
values of a; and a.. In order that end points in the
B: integrations should further increase the asymp-
totic behavior, it is necessary that the residual
coefficient @ — P,P,C”! vanish when 8, = 0, for
any m. This is trivially satisfied for the first term
of @ and for those terms of the sum in @ for which
j > mort < m. It is also trivially satisfied in PP,
for those terms in the P, sum having 7 < m, and
those terms in the P, sum having j > m. In both
Q and — P,P,C" " there remain terms with j < m < ¢.
However, these cancel when the two terms are
added together. This follows from the fact that,
when 8, = 0,"

C(Ll Tt Ln) = C(Ll M Lm—l)C(Lm e Ln)r

CLy -+ Liy) = C(Ly -+ Ln)Cim -+~ Liy),
C(Ljsr -+ L) = C(Ljuy ++* Lp-t)C(Lm -+ L),
C(Lysy -+ Lisy) = C(Lyuy -+ L)C(L +++ Lisy),

j<m<i. W

Thus the residual coefficient vanishes when any 3.,
is set equal to zero.

It is now necessary to evaluate the limit of
(Q — P,P,C™")/B; *++ Bns1 as all the 8,, — 0. This
can be obtained from Egs. (12)—(15) by use of the
result that

C(-+ LpLipey ) = C(-++ L)CLsy -+ +)
The answer is
C(LL, -+ L)/C(Ly --- L), (19)

evaluated with 8,, =0 (m =1, --- , n + 1).

The combination of the results summarized in
Egs. (10), (16), and (19) enables the pinch contri-
bution to the asymptotic behavior of Fig. 2 to be
evaluated. The answer is

2\ n 1
2 4{'<—g>r f dy. d5. ds
wg 1 T6r7 (n) ; y

o Ko AT My + D08 — 1>}

(log )"
£Tin + 1)
(20)

[d(y, 8;9]"

Fia. 3. The contracted diagram associated with Fig. 2.
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Fi6. 4. A diagram contributing to a cut on the physical sheet.

¢(y, 8) and d(y, §; s) are the numerator and de-
nominator functions associated with the contracted
diagram Fig. 3. The expression in the curly brackets
in (20) is the correct Feynman integral for Fig. 3
evaluated in two dimensions. It follows that this
expression can be rewritten'® as

ds, ds, [K(sl)]n
3 21
-/;so [AG, &1, 32)]* $ —m @D
where
A, 81, 82) = 84 57+ 52 — 288, — 288, — 28,5, (22)
and
— 2 —
K(s,) = g dydd 8y + 6 — 1) 23)

1672 J [yés — (v + 8)°m?]

When the contributions from all possible ladder in-
sertions in Fig. 2 are summed, the resulting asymp-
totic behavior is

ds; ds gt
2 4 1 2 , 24
™ Jrco NS, 51, 5] 55 — m @)
where
a(sl) = -1+ Kl(sl)y (25)

and is the trajectory function associated with ladder
diagrams. The expression (24) gives a Regge cut of
the expected form.®"*'*?

4. CUTS ON THE PHYSICAL SHEET

We now consider contributions from the set of
diagrams of the form illustrated by Fig. 4. These
diagrams have been studied by Mandelstam,® using
a different technique.

The method used to evaluate the asymptotic
form closely parallels that given in Secs. 2 and 3.
The coeflicient of £ is of the form

xyC(L; ret Ln) + Plx + sz + Qv (26)

where

T = a0z — Gy,

27)
Y = ajai — azeg,

16 I. T. Drummond, Nuovo Cimento 29, 720 (1963).
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Fia. 5. The contracted diagram associated with Fig. 4.

and

Q = £ Bnn[alal'C(L>+01401«,10(L’)+0£10‘25+ a{oqé]

+ ] E IISIBI'YiC(LiH <o L)y kIIBk

+ agof Z IIS-IBI‘Yi+nC(Li+1 e L;—l)"/Hn kIIﬁk (28)
i<i 1S4 >

The loop L is generated by auazy, - - - v.ajald, and
the loop L’ is generated by ajazva.: - Yancfald.

Both z and y vanish in the physical region of inte-
gration. A corresponding pinch contribution is ob-
tained with the factors §(z+P,C™*) and 6(y+P,C™")
in the numerator of its integrand, and C(L, --- L,)
in the denominator. The § functions enable the a,
and o) integrations to be performed, resulting in
the substitutions

ay = alaaa;‘ + O(ﬂ)v
ai = alejoe; + 0B), B.—0,

and the multiplication of the integrand by (a,ef) ™ +
0(B). The coefficient § of ¢ in the pinch contribution
vanishes if @, = 0, or o/ = 0, or 8,, = 0 (any m).
After performing the oy, o, and 8 integrations, the
resulting asymptotic behavior is given by

(29)

2

- »t+2 1
211'9‘{7:<I§§§) I'in + 2) j; dety dog dody doy dry; dd

o Sast kit ot Xy = DC,y, 6)1"”}
fle, v, 8)lde, v, 8;8]"?
(10 t)n+2
X #Ttn + 3)’ (30)

where ¢ and d refer to the contracted diagram, Fig. 5.
The function f is given by

azaEC(Lx T Ln)ﬁ)

!
a, 018y -+ Baia

f = Lim ( @31)
ay’ =0

Bm—0

J. C. POLKINGHORNE

The evaluation of f is the principal complication of
the calculation.

There are terms in f which arise from the combina-
tion of terms in Q and —P,P.,C™. These are of
exactly the same form as those evaluated in Sec. 3
and yield

agaé[(ag-l-aé-l- S+v+ - F )0 - L)
- ﬁ:c(ll

i=1

l{—l)’Y?C(liu T ln)]

+ aaa:;[(az +a; + &+ Yos1 = + ’an)C(ll Tt ln)

- Z C(ll re li—l)7?+n0(li+l tr ln)

i1

(32)
There are also terms in f arising solely from Q. These
yield

(04204:; + 0‘301;) oCl, - ln) (33)
Finally there are terms in f arising solely from
—P,P,C"" which yield

(aga,ﬁ-{-a3a§) i C(ll e

=]

li—l)7:‘7n+iC(l€+l ce Ll) (34)

The combination of (32), (33), and (34) just gives

} = Cle,, 9. (35)

When this is substituted into (30), the integral in
the curly brackets is just the correct Feynman inte-
gral for Fig. 5 evaluated in two dimensions.

It now follows, just as in Sec. 3, that a summation
of the contributions from diagrams of type Fig. 4
gives a Regge cut of the same form as Eq. (24).
A somewhat curious feature is that the first two
terms required in the sum are missing, since Eq. (30)
starts with n = 0. The absence of the terms of
order ¢ and ¢™* log ¢ does not produce a new phe-
nomenon since they can be absorbed in the G-P
essential singularity at { = —2.
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Langer’s theory on the asymptotic behavior of the solutions of differential equations is applied to
angular momentum, giving stronger results than were possible hitherto by Born approximation. It
is shown that, for potentials V(r) analytic in the right-hand r plane satisfying |?V(r)] < < atr =
0 and |r] = «, the phase shift has the asymptotic form (A =1 + })

V()\/ k) a7 V{r)r dr
—(@2\ht - A &N = DY

Xﬂm ME+N—Y/k

ReX > 0,

in the X plane and for all complex k. Consequently, (a) all Regge trajectories are bounded for analytic
potentials; there are no poles for |\| — < in the right-half A plane, (b) stronger limits can be given
for the feasibility of the Watson—Sommerfeld transformation. The pathological behavior of the cut
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off potentials (e.g., square-well) is attributed to the nonanalyticity of the potential.

I. INTRODUCTION

HE analytical properties of the nonrelativistic
scattering amplitude in the two complex vari-
ables, angular momentum ! and linear momentum k&
(or energy), has been extensively studied for a large
class of potentials. A large number of studies has
been recently devoted to various aspects of this
problem.' *® However, one of the most important
ingredients of the theory, the knowledge of the
asymptotic behavior of the amplitude for large com-
plex I which is needed in the Watson—Sommerfeld
transformation, has not been studied in detail in
the complex [ plane. Most authors refer to Born
approximation results.'' The primary purpose of
this work is to present such a study. In particular
we wish to answer the following questions:
(a) For which class of potentials do the Regge

* Supported in part by the Air Force Office of Scientific
Research and the National Science Foundation.

1 The boundedness of trajectories for Yukawa potentials
zvas 33]ready shown by T. Regge, Nuovo Cimento 14, 951
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( 9 A) O. Barut and F. Calogero, Phys. Rev. 128, 1383
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1 There is some information on asymptotic behavior for
large | in two recently announced papers: L. Brown, D. I.
Fivel, B. W, Lee, and R. F. Sawyer, Ann Phys. (N. Y.), 23,
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trajectories turn in the right-hand [ plane,'” or why
do the trajectories for the cutoff potentials extend
to infinity in [ plane as k — o 2°

(b) For which class of potentials can one make the
Watson—Sommerfeld transformation; or why this is
not possible for cut-off potentials?®

These questions are answered by putting the
Schrodinger equation into Langer’s form™ and apply-
ing his theory of the asymptotic form of the solution
of differential equations as a function of analytic
parameters. In our case the analyticity of the po-
tential plays a dominant role and it is shown that
the very different behavior, for large I, of the ampli-
tude for cut-off potentials, such as square-well, is
due to nonanalyticity of these potentials.

Coulomb potential does not satisfy the bounded-
ness condition at infinity.

The general theory is developed in Secs. II, III,
and IV, In Sec. V we evaluate the asymptotic form of
the scattering amplitude and in Sec. VI we discuss
the behavior of poles at infinity and the Watson—
Sommerfeld transformation.

II. THE METHOD OF LANGER

Our conclusions are due to an application of the
Langer’s results'® on the asymptotic behavior of the
solutions of a certain type of differential equation
to the Schrédinger equation.

Langer has studied the asymptotic solutions of

2 The turning of the trajectories in the right-hand ! plane
for Yukawa potentials has been shown only numerically:
A. Ahmadzadeh, P. Burke, and C. Tate, ‘“Regge Trajectories
for Yukawa potentlals,” UCRL-10216 ( 1962), and C. Love-
lace and Mason, Proc. Intern. Conf. High Energy, CERN,
Geneva, Switzerland, 1962.

18 R, E. Langer, Trans. Am. Math. Soc. 34, 449 (1932).
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the equation

W@ + N’ — x@kl) =0, €Y

where z and ) are complex variables. The funetions
¢°(2) and x(2) are assumed to be holomorphic in
some region G of z containing the origin, and ¢°(2)
to have only a single zero of order » > 0 at the
origin, i.e.,

$'(2) = 2'61(2), (2)

and ¢;(z) is single-valued, holomorphic, and every-
where different from zero.

Under these conditions, the asymptotic form, for
sufficiently large |\|, of a pair of linearly inde-
pendent solutions may always be written in the form

n >0, n real,

' o exp (£, (3)
I
with derivatives
ut’ o e (DA 1 () [ ()¢ ()
+ u@¥'(R)/¥(), 4
where
20 = [ o) dz, 5)
= A ®(2), (6)
V) = () /8@, O
and
p=1/(2 + n). ®

The method gives not only the asymptotic form
of the solutions but also that of their derivatives.
This is one of its advantages over, for example,
the Born approximation or the WKB method. Fur-
thermore, the result includes the case of interest
to us in which ¢(z) vanishes at a finite point in the
z plane. This point corresponds to the turning point
in the WKB method.

We also note that the above asymptotic forms are
independent of x(2) except that it has to be a holo-
morphic function.

Out of the two linearly independent solutions
given by Eq. (3), the desired combination depending
on the boundary condition will be constructed.

III. LANGER’S FORM OF THE SCHRODINGER
EQUATION

The radial Schrodinger equation
') + (& — O\ = D’ — Vo) =0,

where we have used

)

A. O. BARUT AND J. DILLEY

A=1+% and #*/2m = 1,

can be transformed into the form of Eq. (1) by intro-
ducing the new variable z defined by

r = kX, (10)
and the new wavefunetion
u@) = r h@). (11)
We obtain
uw’(2) + N{[E* — V()] — 1lulz) = 0. (12)

Thus, in our case
x(@) =0, and ¢'(zN) = [k — V(re')]e” — 1; (13)

¢°(2, \) depends also on A, but Langer’s results are
easily extended to this case if the conditions on ¢
are satisfied for each X\ as we discuss below.

In order to be able to use Langer’s results we must
consider potentials which may be continued ana-
lytically in 2, z = In (r/\). Specifically, we consider
potentials such that

(i) ¥V (r) is bounded; (this condition will be
used in Sec. IV).
(ii) V(r) is analytically continuable into the
region —6, < argr < 6, 6, < im |r| > 0.
(At r = O there could be a singularity such
that *V is finite).
(iii) V(r) decreases monotonically when |r| is suffi-
ciently large within the region given in (ii).

Then, if we take the principal determination of the
logarithm, V(2) is holomorphie in a strip

—0 —argA < Imz< 6, —arg\.

We now show that, in the region of complex A
and z where |V (=£Xe®)| is monotonically decreasing,
¢’(2) defined by (13) has, for sufficiently large |\,
one simple zero at 2, such that

2, — log (£1/k)(or at ro — £A/k),
Ao
where the sign = is chosen such that r, lies within
the region of decreasing V(r).
The quantity 2, is given by [from (13)]
[k* — V()] — 1 = 0, (14)
or

Rez, = —1log [K° — V(xXe™)

. (15)

Because V(2) is bounded, |k* — V(z\e®)| is also
bounded for fixed %*; hence

Rez, > —M, or e

- M
>e ",

(16)
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where M is some fixed constant. By choosing |A|
sufficiently large we may make [\e™| arbitrarily
large and hence force it into the region where |V|
decreases monotonically and in that region we have
|V1 « k?, so that for k& % 0,

& — x1/k,

IA|—o

or ro ~ x£(M\/k).

{A |-

More presisely, expanding ¢*(r) around r = +£M\/k,

for fixed &,

F6) = ¥ = VO3 — 1 = —33 VEME)

+[-Lvem 2 25 - vawm]

X FNE)+ -,
we get, for r, defined by ¢°(r,) = 0,
ro = £Nk + V(ENE)/E

A A L 20~ V(MR
X[*Ev(ii)* v ]+

= £k + O(V(ENE)/E?).

(17

(18)

Thus, for [\| = ©, ¢°(r) has a simple zero near
rs = z=MA/k whenever either of the quantities lie
in the region of decreasing |V(r)|, and Eq. (12)
satisfies Langer’s condition.

Formally, Langer’s results are written with the
zero of ¢ at the origin, 2, = 0, and it is, of course,
possible to write the Schridinger equation in this
form by making a translation n = z — 2,. It is
completely equivalent, however, to retain the vari-
ables z or 7, and write, for example,

() = f ‘ ¢\ d2’ or () = fr ’ ) c—j';

in place of ®(n) = [I ¢(n') dy”’. This we choose to
do in the following.

Before proceeding further, it is important to see
explicitly what regions of A and k& planes are covered
by the present treatment.

(a) Potentials decreasing as a power ™, n > 2,
as r — . An example would be the ratio of two
polynomials such as V(r) = (1 — r)/r(1 + )’
Such potentials decrease asymptotically throughout
the right-half  plane so that if —3r < arg M/k < i,
ro = Mk, and if arg N/k < —3r or arg Mk > 1ix,
7o = —A/k lie within the region of decreasing V(r).
Hence, excepting &k = 0, our results will hold for
all A and % if |\| is taken to be sufficiently large.

(b) Exponential potential, V(r) = ¢™*. The po-
tential decreases in the right-hand r plane except

1403

along the imaginary axis where it oscillates. There-
fore, all values of X and k are permissible except
when arg A\/k = 3. Thus, for example, for real k,
the imaginary axis of X is excluded, and for imaginary
k, the real \ axis is excluded.

(¢) Yukaws potential, V{r) = ¢ /r. Due to the
1/r factor, the potential decreases throughout the
right-half r plane, including the imaginary axis, so
that all A and & are permissible. The same is clearly
true for a superposition of Yukawa potentials
or a modified Yukawa potential such as V({r) =
e/ + ).

(d) Gaussian potential, V{r) = ™. Our asymp-
totic results may be proved within a region where
larg A/k| < ir. They may also hold for a larger
domain but the method is inapplicable.

In the preceding reduction to Langer’s form, k
has been assumed to have some fixed, finite, value,
and hence we have used the fact that |[V(\/k)| < k*
as |\| — «. Even if this fixed value of k is made
arbitrarily large, this result still holds for potentials
less singular at the origin than 1/7* even though
now |V(A\/k)] = 0 and may even become infinite.
[See condition (i) on the potential.] In the following
we shall generally consider, for simplicity, k to be
some fixed quantity. We consider A and % as param-
eters, and r an independent variable which, in the
calculation of the scattering amplitude, tends to
infinity independent of A and k. Furthermore, it is
assumed for definiteness in the following, that A and
k are such that r, =2 \/k, but the identical arguments
hold for r, = —\/k. For arg (A\/k) = %=, either
value 7, = =A/k may be taken in the expression
for ®(r) which is independent of the lower limit 7,.
Thus the two solutions obtained with r, = +£M/k
are identical on this line and therefore analytic
continuation of each other.

Iv. ASYMPTOTIC FORM OF THE SOLUTIONS FOR
LARGE 2

We can now apply the asymptotic formulas (3)
and (4) for large [A\| to Eq. (12). To illustrate the
method we first consider a soluble example where
the exact solution is known.

Soluble Example: V(r) = —c/r*. From Eq. (13),

written now in terms of 7, we have
#() = [(&* + c/r)0*/\°) — 11,
and, from (5), with dr = rdz [Eq. (10)],

(19)

20) = [ 107+ oo + 1 E

= [?/\* — 1 + ¢/ — (1 — ¢/rD)?
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X tan™' [k%?/A — 1 + ¢/A%).

Furthermore, ¢ = % and the asymptotic form of the
solutions for large |A| but for all r is completely de-
termined. We need, in particular, the form of the
solution for large r which is regular at r = 0. As we
shall see later, this regular solution is given by the
following combination of 4~ (Appendix II):

u = 3w +u),
or
v = 3 )
Using the expansion

o) — K7/ — 111 — ¢/2k%" + ---)

and

() — [kr*/N — 110 — /2K + ---)

00

= = e/ + ),
we obtain

o) — cos (kr — 3mM1 — ¢/A) — 1m)

[RYEETS
= cos (kr — (3N — im),  (20)
where
A=\ -

In this simple case, one can of course obtain the
solution directly. The asymptotic form of the exact
solution fi(kr) = (3« kr)'J5(kr) when |kr] > [§|

A. O. BARUT AND J. DILLEY

We also evaluate the scattering amplitude for
I\| @ « by two different methods. Anticipating
Eq. (35), the scattering amplitude is given by

AN, k) = sin \8°6®)/7 exp (—i\d°8®),

where, from (34), ° 6& = & — &° and &° is the
value of ® when V(r) = 0, i.e., ¢ = 0 in this example.
We find

s ]* _ [W ]* S
¢ __ rr oo _— 1 pAALA. a8 2
¢ = |:)\2 1 tan X 1 ';'—:m X >

and

A°0D —> SN = (AP =0} - —

row 2 )

L2
4’
hence

nC
A\ E) — AN (21)

On the other hand, we can evaluate the amplitude
for our example directly from the Wronskian

W(js(kr), sn(kr)). From the differential equations

2 2 __ 1
(&Y 2d e o

ar 7
d N-1 )
[&7 -+ kz:lﬂi(kr) =0,
we obtain

Weithn, i) = (5~ x [ BEEGn &r

gives again Eq. (20). or™
W= (5 — ﬂf_[ r(HI(/2 + 1/2) ]
- 2 L2 + 7\/2 — /2T + N2 + X/2I'(1 — 7\/2 + X/2)

e

which is in agreement with (21) because
W(jx, j») = k sin A8°5®.

We turn now to the general case, and wish to
show that for large |A|, ¢ — ¢° and & — &°, where
¢° and ®° are the quantities corresponding to the
unperturbed situation with V(r) = 0:

o°r) = (kr*/\* — 1)}, (22)
%) = f ' (Kr2/A% — DY dr/r,. (22)
Mk

Consider first ¢(r) given by (13), i.e.,

AT+ /29T — ¢/2))

(=2 2% sin (rc/20) —

RS

T [
_4k>\'

¢(r) = [(&* — VEO)r'/Z* — 1],

If arg (\/k) = 8 5 0, then k°r°/A\* — 1 cannot vanish
on the real r axis; in fact

VC21'2/)\2 - 1[2 Z '6—21'9 .
Furthermore, if
V) < (23)

[V (r)r*/N°| can be made arbitrarily small by taking
IA| large enough. Thus,

1|> = 4sin’ 9.

at r=0 and r = =,

4. G. N. Watson, Theory of Bessel Functions (Cambridge
University Press, London, England, 1944), p. 403.
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o) = (Kr'/\ — 1)}

X (1 = VOr/N/20 /N = 1)+ -,
or
0 = 01~ A
Vo' | e
S nisme S I e 0. (29

For the case arg \/k = 6 = 0 which we had excluded,
it is still true that [k*°/A\* — 1] > ¢ where ¢ is a
fixed nonzero number, except in a small neighbor-
hood of r = A/k. In that neighborhood both ¢*(r)
and ¢°' (r) may be expanded in Taylor series, [Eq.
(17) for ¢°(r)] and

60 = (L4 26/ —AB) + - . (25)
and we obtain
#6) ~ 670 = —35 VO/B)
- [kl VIR + ——V(—)‘L’“—] ~ME) e =0
forallk > 0,  for ’r - % <e (26

This proves the assertion for ¢(r). To study ®(r),

20) = [ [ = Ve -1 @)

3 dn
P,
one would like to expand the integrand as in (24)
and (25). This cannot be done, however, in a neigh-
borhood of the lower limit of the integral, because,
by definition,

Ere/N° — 1 = (r3/N)YViry).

Therefore, we divide the integral into two parts,
the first from r, to some point B(A), the other from
E(\) to r, along which the expansions may be used.
The point R(\) evidently must satisfy

[VIR)R?/N*| « |K°R*/N\* — 1]. (28)
A convenient choice is
RO\ = ro + 1/(AD, (29)

in which case the left-hand side of (28) approaches
|V(\/k)/E*| for large |\, and the right-hand side
becomes

IE°R?/\* — 1]

2
= %(rﬁ + 2ro/EN 4+ 1/E) — 1 |2x74).

N>
Thus the inequality (28) is satisfied for large |A|
and fixed k if V(\/k) vanishes at least like x~%*¢

1405

as ]\| = . The inequality is obviously also satis-
fied for k — « as long as V(r) is less singular than
ratr=0.

We have then

B 2 3
o) - #0) = [ {[lf - VO - 1} u
RPTEYN dr _ VN dr
- Nk [k?'/)\ 1}* {22/)\ _1}

(30)

VAN dr
+ fR 8k /N — 1P r +
Because, for [\| — «, the region of integration for
the first two integrals becomes infinitesimally small,

we replace in these integrals V{r) by V(r,); then the
integrals may be performed:

fR {W - V(?'o)]g - 1}*%”
={ —ven% - 1}*

— tan™ {[ - V(ro)] } '
%x 4+ e

II=

or, expanding tan™ z =
the argument is small,

1]t [

,,dr

z - , because

I, = }E'R*/N° —
Similarly,

I, = f @\ — 1)

3 V(r,,)zzw ' ]
2 KR*/N — '

= YR — 1)
+ O([sz?/)\z — 1]5/2).

The contribution from the first two integrals in (30)
is therefore

_ i AMM
\/5 )\ 2k2
In order that the last integral in (30) exist for
all r, in particular for r = 0, the potential has to
behave at the origin as
V) — 7%,

raf)

1FVER /N —

Ao

e> 0. (31)
The case ¢ = 0 has been discussed as an example
at the beginning of this section and represents indeed
the first case in which ®(r) does not approach ®°(r)
in the limit.

Collecting the results, we have finally

@) — () — —+/2\7F

1A |—>cn

YOk '

g2 V{r)r dr
X TN L - 82
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which approaches zero as \| = «. Q.E.D. In the
left half-plane we have to take the turning point
r1 & —A/k; the argument of V becomes V{(—\/k).

V. SCATTERING AMPLITUDE FOR LARGE ||

We write the partial wave amplitudes, in the usual
manner, as the ratio of two Wronskians (Appendix I)
AR k) = 2W00), 4Gr)/Wo@), P%),  (33)

where 5, = 3" 4+ A®] with A"? being the
spherical Hankel functions. We write

¢ = ¢°(1 + o¢),

and evaluate in a straightforward manner the above
Wronskians (Appendix II). The result is, for
Rex > 0,

® = (1 + §9), (34)

sin \®°6®)

AR — Mo © €Xp (—AD° 5<I>)

(35)
Thus the scattering amplitude is determined by the

quantity ®°6® alone which we have evaluated in
the previous section, [Eq. (32)]:

/3 YR

A3 — o2

A f—co

AT

22
2 ro+k—tA—?} [k'r

Vir)r dr

An upper bound may be placed on this expres-
sion by choosing a path of integration such that
[(k**/A* — 1)} takes its minimum value at r =
R = r, + 1/k\}. Hence,

hi
A&°53) l(zx) VO\/E)
m—m 2k

3t [ verla @D
ro+tkTIAT
Under the stated restrictions placed upon the
potential, r"V(r) = 0 at r = 0 and r = o, each
term in (37) vanishes for any value of k, finite or
infinite. Thus, for sufficiently large |A|,

AD°5d — 0.

[A ]

(38)

We then obtain, finally, the following asymptotic
form of the scattering amplitude:

|_m
woa 7 Vi dr
At [ e ReMk 2 0. (39

AND J. DILLEY

In reference 2 it has been shown, under similar
conditions, by means of generalized WKB method,
that the wavefunction approaches the unperturbed
one, 2 result which we have also noted. They then
use the Born approximation limit for large A,

ALK =1 — ¥ v —2i5 = +3k? f RNV dr.
0

(40)

Our result [Eq. (39)] is somewhat stronger than
the Born approximation. Furthermore, the first term
in (39) is explicit and suitable bounds may be placed
on the second term, whereas in (40) conclusions are
difficult to draw unless the integration from 0 to «
can be performed. The reason for this difference is
that with Langer’s method, the derivative of the
wavefunctions is also known, a situation which
énables one to consider the pertinent Wronskians
directly, and consequently express the scattering
amplitude in terms of an integral entirely in the
asymptotic region of the potential instead of the
region ) < r < o,

We can obtain the Born approximation (40) for a
Yukawa potential, for example, from our result (39).
We consider the dominant second term

® e “ dr

12N [t

or, with the change of variables, ¢ = p/k and
£ = ur/ A,
=2 f v _ﬁﬂg_
pla [ =
As A oo the integrand is small except at

£ /A o°. Furthermore, for k >> u or a <18 -
o = 2 [cosh £ — cosh o], and we get'®

) _)\g df
I
,{,me i [coshg ~ cosh aff

1
EQ" ;(1 + 2k2)’ a >0, ReXx > —1

which is the Born approximation result for the
Yukawa potential.

VI. APPLICATIONS

A. Poles at Infinity

The poles in the angular-momentum plane are
given by the zeros of the denominator of Eq. (35).
15 Bateman Manuscript Project, Higher Transcendental

Functions, edited by A. Erdelyl (McGraw-Hill Book Com-
pany, Inc.,, New York, 1953), Vol. I, p. 155.
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But, because (38) holds, we conclude that under the
restrictions of the potential there are no poles in the
right-half A plane for large |\|. This means of course
that all Regge trajectories are bounded in the A
plane, Re A > 0, none extending to infinity.

Because, for example, a square-well potential
which is analytieally rounded off would show the
same behavior, we must attribute the unbounded
trajectories in cutoff potentials’® to the nonana-
lyticity of the potential; all other requirements are
satisfied.

B. Watson—-Sommerfeld Transformation

We now consider the representation of the total
scattering amplitude

1 [ 20AQ, B)Py_y(—cos §) dAr
2 J, sine(A — %)

where ¢ is a contour enclosing the positive real axis,
and ask for what class of potentials it is permissible
to deform the contour ¢ such that

2VAN, B)Py_y(—cos 6) d\
sin (A — 1)

A(K®, cos ) = . (41

AW cos 0) = 5 [

-+ pole terms. (42)

Taking into account the behavior of

Py (—cos 6)/sin (A — })

as \] = =, one can always choose a region of

cos 8 such that even if A(A, k) behaves as a power
along the imaginary axis, the transformation (42)
is possible. One should make the Watson—Sommer-
feld transformation for these suitable cos 6 values
and then continue the result analytically.

From the estimate (37) we find that for a single
Yukawa potential, 8 — x 1 O(J]7Y) + O(|I| ) except
on the imaginary axis. For a superposition of Yukawa
potential one can have & — O(]I|™), in which case
the transformation (42) is possible for all cos 6.

These are upper bounds. If we do the second
integral in (39) for a superposition of Yukawa po-
tential for A = 4y, we get,”” with £ = kr/,

L3 —w(y/&)

[ ot au @2

ldéf

P (2) f HéZ)(pJ/iC)G(ﬂ) dﬂ — Z’L—'

y—0

x[ Juy ~z(py/k~§w)o_(u) d,u.

18 See for example, reference 9, Appendix 1.
7 W. Grobner and N. Hofrelter, Integraltafeln (Springer~
Verlag, Vienna, 1957), Part I, p. 191.
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Thus the amplitude actually goes as O(}Jl|™}) along
the imaginary axis. If the results of the present
theory could be extended to a single Yukawsa po-
tential, then our limit above would give O(|l|™)
along the imaginary axis.

APPENDIX I

Two independent solutions of the unperturbed
equation

W P k) = Gkr) HY (k)
have the asymptotic forms

BB lr) = ¢,

Po®

For r — o, the radial wave equation can be written
as a linear combination of these two solutions:

n@®) — AR (kr) + BR® (kr)

and
w{(r) = A a% U (kr) + B % B2 (kr).
Hence,
_ W), i) @,
A = e, R ey = 2 Vo0, ),
B — FV(%’}‘(?‘) hiu(kr)) W(v)\(7'> h{”(i&?))

T W ), )

where W(g:, ¢) is the Wronskian W(g,, ¢.) =
oy — o). From the asymptotic form

— e—x‘rl(A/B)eHcr},

i(x%)w-}«)[e—-{kr

o\(r) — Be
the S matrix is

s = A _We), (k)
~ B FV{?};\(?‘) B D)) (19?'))

Then Eq. (33) follows with A\, &) = 1 — 8,

APPENDIX II
From Eqgs. (3) and (4),

Az E e
u =i (AP{z})}
(z) YETS (¢(Z)) ¢ ’

- 1V ocasun
wo(z) — (¢O(z)>\§> e .

Any solution may be expressed as a linear com-
bination of these independent solutions. For the
unperturbed case, the solutions are known to be the
spherical Bessel functions and may be identified by
well-known identities for these functions™:
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M) = (Grkn) HLY (kr)
= (Ve ui0) — (ke /o)l 007,

WP (k) = (Gmkr) H3® (kr)
— (}\%keZ)geqnu—o(z) N (keZ/%)%e—(wwh)’
Gu(kry=3[hs0 (er) +R% (kr)] — (ke /ho)! sin (Ao —}m).
The corresponding physical solution of the Schro-
dinger equation behaving as r**? at r = 0is given by™

nr) = a)u’ + b,

n@) — 30 U@ + et ()] — (k;zy
M=o

sin A® — ir).

Although the asymptotic form of «* is known in
the whole A plane, that of the physical wavefunc-
tion v is known only for Re A > 0. This result only
holds in the right half-plane. We know only the
asymptotic forms of a(A) and b(2). In order to
continue », to Re A < 0 we must know a(\) and
b(A) completely.

A. O. BARUT AND J. DILLEY

With the above identification of the solutions, the
evaluation of the Wronskians (33) is straight-
forward. One need merely to use, with »r — o, the
forms (3) and (4), and the asymptotic evaluations
1} — ke,

IA]—o

®° = [k% — 1]* — tan™"' [K%*” — 1) = ke’ — ir.

¢0 — []CZeZz -

Since ¢ — ¢’,® — ¢°, it is convenient to

[A |- 1IN

write

¢ =9¢'(1+¢), &=+ .

The final results are found to be

W), ikkr)) — ksin \8°6®,

row
M-

VV(U)\(T)’ h)(‘l)(kr) N ike-i)@oaq,'

rso
Ao

Hence we obtain Eq. (35).
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HE analytic properties of Schrodinger partial-

wave scattering amplitudes have been the object
of considerable study.' It is known® that if the po-
tential behaves like ¢™°" for large r, then the Jost
function f(k) is analytic in the region —o <
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its detailed behavior has been studied only for po-

* Present address: Massachusetts Institute of Technology,
Cambridge, Massachusetts.

1 R. Jost, Helv. Phys. Acta 20, 256 (1947); R. Newton,
J. Math. Phys. 1, 319 (1960), which contains numerous
references.

2 V. Bargmann, Rev. Mod. Phys. 21, 488 (1949).

tentials which vanish identically outside some finite
radius. In such a case it was shown by Regge® and
by Humblet* that f(k) increases exponentially in the
upper half-plane, and its large zeros are located
just above the real axis, with approximately uniform
spacing.

In this paper, the asymptotic behavior of f(k)
is studied for potentials which decrease more rapidly
than any exponential, but are not cut off. Only the
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3 T. Regge, Nuovo Cimento 8, 671 (1958).
4 J. Humblet, Mem. Soc. Roy. Sci. Liege 4, 12 (1952).
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pected that the other partial waves will exhibit
similar behavior.

It is, of course, not surprising to find that the
form of the potential at very large distances, which
must have a negligible effect on the physical scatter-
ing amplitude (real %), can radically alter the be-
havior of f(k) elsewhere in the & plane.

I‘

The solution of the S-wave Schrodinger equation
with Jost-type boundary condition satisfies the inte-
gral equation

i, ) =e“*"‘*+%C f “sink( — V), ) dr'. (1)

The Jost function f(k) = f(k, 0) determines the S
matrix for the problem by

S(k) = f(k)/{(—k). 2

The analytic continuation of f(k, r) to complex k
is defined by Eq. (1). When the potential vanishes
faster at infinity than any exponential, the iterative
solution

e, r) = 2a 1"k, ), )

[k, r) = e,

Ff V&, 7 = % f sin k(' — NV &, ) dr (4)
converges absolutely in the entire k plane.” More-
over, just as with cut-off potentials,® the solution
for large % is dominated by the first iteration (Born
approximation). This assertion is proved in Appendix
B. The Jost function is, therefore, given asymp-
totically by

fk) ~ 1+ (1/2ik)[J — I(B)], (5)

where®
J = f " Ve dr, (68)
= [ T Ve ™ dr. (6b)

The integral J is independent of %k and requires

5 The separation of the Born approximation into two
parts, of course, requires that each of these integrals exist,
and this places some restriction on the potential. In addition
to the requirement that V(r) vanish faster than any expo-
nential, it is certainly sufficient to assume that [|V(r)l dr < o,
Actually, as long as Jr [V(r)] dr < =, the neighborhood of
the origin can cause no difficulty, since the combination
J — I must converge even though the separate terms may
not. In such a case it would be necessary to combine the
two integrals in the interval between 0 and some small 5,
but this interval does not contribute to the asymptotic
behavior of f(k).
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no further consideration. We wish to examine the
asymptotic behavior of I(k), assuming at first that
the potential follows a pure “exponential power
law,” i.e.,

Vi) = Voexp [—(/a)’], p>1. (V)

With this potential the integral may be put into
a standard form

L = Vap™” f exp (xz — -1-2’) dz, (8)
0 ¥4
where

z2=p"/a); k= p (—2ka). ©

We are interested in the behavior of (8) for large «.

A power-series expansion for the integral is easily
obtained. The result is

>

a=0

Vot
ID _—

1/p \n

. p
The series (10) converges absolutely for all «, as
long as p > 1. It is, therefore, an entire function
and constitutes a formal solution of the problem.
The convergence is, of course, extremely slow for
large values of x, and the series appears to be useless
for determining the asymptotic behavior. However,
two theorems from the theory of entire funetions
may be employed to infer from (10) the maximum
rate of growth of I,(x). The first theorem® states
that the order” is given in terms of the coefficients
a, of the power series by the expression

nlogn (1)
log (1/a.)
For the series (10), the limit in (11) is easily evalu-
ated with the use of Stirling’s formula for the T
function, and one obtains the result

p=p/lp— 1. (12)

This result is valid for all p > 1. For large p, the
order decreases toward unity. On the other hand,
when p = 1 + ¢, the order is 1 4 (1/¢) and grows
without limit as ¢ — 0. This was already pointed
out by Regge,’ although the estimate of the order
given by him (the largest integer between 1 and
% + 3/2¢) appears to be incorrect.

A second theorem® states that the type’ r of the
function is given by

p = limsup

N30

¢R. P. Boas, Eniire Functions (Academic Press Inec.,
New York, 1954), p. 9.

7 An entire function is of order p if its maximum modulus
M(zr) is O (exp r#*<) for all ¢« > 0 but no ¢ < 0. A function
of finite order p is of type r if M(r) = O (exp (r + ) r#) for
all e > O but no e < 0.

8 Reference 6, p. 11,
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T = y/ep, (13) the interval always includes the positive imaginary
h axis (real axis in the & plane).
whete ) , According to (18), the leading term in the region
v = lim sup na;"™". (14 (19) is always ~1/«, regardless of the value of p.

n—w

For the series (10), the limit in (14) is just e. There-
fore,

r=1/p = {p — D/p, (15)
and the maximum modulus of I,{x) must be
O(exp {[e + Zi;’;—l:l ]Kl”””'”})- (16)

1L

We next seek an actual asymptotic expansion for
the integral (8). For a part of the « plane, such an
expansion may be obtained from the following
theorem®:

Let F(t) be analytic in o« < arg t < B, with

Fi) ~ 2, e for t—0,
—1 < Redy < Re), -
and
[F(®)] < Ae*'*' for |t] > R > 0,
Then the integral

a >0,

fs) = fo " py

is analytic in Re (se™) > a, a < ¢ < 8, and possesses
the asymptotic expansion

() ~ ch M

~ s)\,+1

amn

for s — « on every ray with —8 — ir < arg s <
—a + %7, and uniformly in every interior sector.
In the present case the function

f@) = exp [—(1/p)?"]

is bounded in —7/2p < arg z < w/2p. (For non-
integral p there is a branch point at the origin, but
this does not interfere with the validity of the
theorem.) It follows that the asymptotic series

Tnp + 1)

L) ~ ,;, (=p)nl(—™ (18)
is valid in the interval
ir —n/2p < argk < 7/2p + 3x, (19)

and uniformly in any smaller interval. In particular,

? G. Doetsch, Handbuch der Laplace Transformation.(Birk-
hauser Verlag, Basel, 1956), Vol. II, p. 48.

For our purposes only this leading term is significant,
since the higher iterations in (2) will certainly con-
tribute terms comparable to the higher terms in
(18). Furthermore, when I does have the asymptotic
form (18), the Born approximation (5) is dominated
by the other integral J, which is one order higher in «.
(This is always the case in Re « < 0, i.e., the lower
half of the % plane.)

Another approach to the asymptotic behavior,
which is applicable also outside the region (19), is
the method of steepest descents (Appendix A).'
This method makes use of the fact that the im-
portant contributions to the integral come from
regions where the exponent has its largest real part.
By appropriate deformation of the path, these re-
gions may be concentrated, for large «, in the im-
mediate vicinity of the end points or of saddle
points. For the integral (8) under consideration, the
end-point contribution reproduces the series (18),
while the saddle-point integral is (Appendix A)

2r ); (p -1 ,,/(,,_1))/ (p=2)/(2p—2)
(p ) &P » K K . (20)

When arg « is in the region (19), the contribution
of (20) is vanishingly small for large «, so the
asymptotic behavior is given by (18). However,
in the remainder of the « plane, i.e., for —ir -+
x/2p < arg k < ¥r — x/2p, the real part of the
exponent is positive, and (20) is the dominant term
in the asymptotic expansion. The result is in agree-
ment with the estimate of the growth given by (16).

For the Jost function (5), the asymptotic behavior
is then the following:

2r/(p — DIVea’
(k) ~ E)l—/(h!—:;/((_?i Zika))(]a"_"o’(f(z”‘z’

X exp [(p - 1)(___2;1%9/@—1)], (21)

7/2p < argk < 7 — x/2p;

(22)
-
) ~ 1+ ?szf V@) dr elsewhere.  (23)

In (21) the argument of —% must be taken as —3%.

When p is large, i.e., when the potential goes very
rapidly to zero, f(k) approaches exponential type
and the region in which (21) is the dominant be-
mffreys and B. Jeffreys, Methods of Mathematical

Phggécs, (Cambridge University Press, New York, 1956),
p- .
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havior comprises almost all of the upper half-plane.
It is to be expected that if the potential vanishes
more rapidly than does (7) for any value of p,
then f(k) is actually of order one and increases in
the entire upper half-plane. This may be verified.
For example, with the potential

Vir) = exp (—¢), (24)
the integral I(k) can be transformed to
f u e du. (25)
1

The asymptotic behavior is then given by Stirling’s
formula, since, for large «, the integral from zero to
one becomes vanishingly small. Hence, for poten-
tial (24),

I)~ Tk ~exp [(k—3) logxk—«], Rex>0.(26)

The order of f(k) in this case is unity, the type is
infinite, and the growth is in the entire upper half
of the % plane.

For “slowly’”’ decreasing potentials, (p = 1), the
result (21) indicates that although the growth of
f(k) is extremely rapid, the region in which the func-
tion grows is confined to a very small sector enclosing
the positive imaginary axis. Suppose the potential
decreases still more slowly, e.g.,

Vir) =r7, (27)

which vanishes more slowly than (7) for any p,
although still more rapidly than any exponential.
For such a potential, the saddle-point integration
gives as the dominant term

I(k) ~ exp (¢"), (28)

which is of infinite order. However, (28) holds only
within an infinitesimal neighborhood about the posi-
tive real axis (positive imaginary axis in the %
plane). The behavior of (k) is evidently quite patho-
logical in this vicinity. It may be recalled that it
is on the imaginary k axis that the “redundant”
poles and other singularities appear when the po-
tential decreases so slowly that f(k) ceases to be
entire.

III.

From the asymptotic expressions (21) and (23),
it is clear that the large zeros of (k) must be located
near the lines

(29)

The density of zeros can be estimated with the use

arg k = 7/2p, T — w/2p.
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of Jensen’s theorem,' which gives the result
n(h) ~ (1/m)(p — 1)(2ah/p)” "7, (30)

where n(h) is the number of zeros with modulus < k.
As is to be expected, the zeros are more dense, the
greater the order of the function. [n(h) = O(°).]

The location of the nth zero (counting only the
ones in the first quadrant) may be roughly esti-
mated from (21). Writing

k. = h, exp i(z/2p + 6.), (31)

and retaining only the leading terms, we obtain

{p—1)/p
2ah, ~ (=22, (2)
p —
OPRCISIVIEm L. /- 4) log (2ah,)
B =

The image point h, exp ¢(r — 7/2p — §,) is also a
zero; with this factor included the density as de-
termined by (32) is in accord with the result (30).

When p — =, Egs. (31)-(33) show that the zeros
approach the real axis, as well as the uniform spacing
characteristic of cut-off potentials.® On the other
hand, for p close to unity, the large zeros are near
the imaginary axis. In addition, the angle §,, as
given by (33), is negative: The zeros are just outside
the region where (21) is the asymptotic behavior.
The explanation is that the saddle-point integral
is here of the form «* exp [—e |«|” "], where
g > 0 and the argument of the exponential has an
infinitesimally negative real part. Such a term is
large over a long distance, even though it eventually
decreases exponentially and is overpowered by the
term which decreases only as 1/«. The situation is
quite delicate in such a boundary region, where one
form of asymptotic behavior is disappearing and
being replaced by another.

Iv.

We now wish to drop the assumption that the
potential is purely of the form (7). Suppose, instead,
that

Vi) = Vi), r<b, (34a)
= Voexp [—(/a)’], r>b, (34b)

where V, is arbitrary, subject to the usual condi-
tions of integrability.’ Then the integral of Eq. (6b)
is decomposed into two parts:

1) = fo "V Pe dr

Mnce 6, p. 2.
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@

47, fb exp [—2ikr — (r/a)] dr = I, + I,. (35)

The first integral in (35) is just the one which occurs
in the case of cut-off potentials. It is dominated by
the vicinity of r = b, and can be treated by a straight-
forward extension of the theorem (17). Assuming
that V,(r) can be expanded near r = b in a series
of the form

Vi)~ 2, 6(b —n", —1<X <X\ -, (36)
one gets for the asymptotic behavior of I,
I ~ _e—Zikb Z ¢ I‘()\r + ]-)- (37)

> (2T

The first term of (37) is the result given by Regge’
for cut-off potentials. If all the left derivatives V™
exist at r = b, the result can also be written in the
form

—2ikb V{")(b)
Ia ~ —€ ; (27:k)n+1'
The second integral in (35) differs from (8) only
in having a finite end point and may be analyzed in
the same manner. When arg k is between 0 and =/2p,
the theorem of (17) holds and the result is of the
form (38):

I, ~ V,exp [—~2ikb — (b/a)”]
X [1/2ik — (p/a)(b/a)”"(1/2ik)* + O/K)].  (39)

The contribution is comparable to that of I,. If
the potential happens to be continuous at b, the
leading term in (39) cancels that of (37). If, in
addition, (38) holds for I, and one or more deriva-
tives are continuous at b, then further terms cancel,
and the asymptotic behavior of (k) is

f(k) ~ (const) exp [—2ikb — (b/a)’]/(2tk)**?, (40)

where o is the first derivative which is discontin-
uous.”” In any case f(k) is of exponential growth
instead of approaching unity, as does (23).

When arg k is in the region (22), f(k) is once again
dominated by the saddle-point integral. Since this
integral is determined by the vicinity of the saddle
point, removal of a distant portion of the path
cannot have any effect, and the result is precisely
the same as (21). A term (40) is of course also
present, and if b is large the factor exp (—7kb) causes
such a term to be important over a long range of
values of k. However, it must eventually be over-
taken by the saddle-point contribution, which in-

(38)

12 There must be a derivative which is discontinuous,
or else the form (34b) would extend to a smaller value of r.

L. SARTORI

creases as exp (k%) with ¢ > 0. Hence, for any finite b,
the asymptotic behavior in the region (22) is still
given by (21).

Similar considerations apply to the location of the
zeros. An estimate for the modulus %, is provided
by the solution of the equation

[(p — 1)/pp/(p—I)](zahn)p/(p—l)
+ 2bh, sin [ix(p — 1)/p] = 2mn. (41)

If b is large, the location of many of the zeros will
be appreciably shifted. Eventually, however, the
first term in Eq. (39) becomes predominant and the
solution reduces to (32). The angle 4, is slightly
changed: Instead of (33), it is given by

8, ~ (const)/(2mm)"/ "™, (42)

In addition, there will be another set of zeros, close
to the real axis and with uniform spacing, deter-
mined solely by the behavior of the potential near
r=b.

This discussion does not, by any means, exhaust
the class of potentials which decrease faster than
any exponential. It suffices, however, to demon-
strate that the behavior of f(k¥) near the positive
imaginary axis (and, hence, also the order and type)
depend quite sensitively on the shape of the poten-
tial tail. In the vicinity of the real axis, on the other
hand, the asymptotic behavior is determined by the
form of V(r) at finite distances, as it must be on
physical grounds. If the potential happens to be of
the form (34) for some finite b, then the asymptotic
form of f(k) is given by Eqgs. (21) and (23). In
general, as long as a power-series expansion for f(k)
can be obtained, the order and type may be deter-
mined from Egs. (11) and (13).

APPENDIX A

The method of steepest descents™ is applicable to
integrals of the form
b
f ef (z) dz'

in which f(2) is analytic and depends linearly on some
parameter ¢, and the integral is to be evaluated
asymptotically for large ¢. The method consists of de-
forming the path of integration into segments along
which the real and imaginary parts of f(z) are, alter-
nately, constant. On Im f = const, the real part is
monotonic, unless the path passes through a point
where f'(2) = 0. At such a point, two paths Im f =
const cross; since Re f is a solution of Laplace’s
equation, it must be a maximum along one of the

(A1)
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paths, a minimum along the other (hence, the des-
ignation saddle point). The saddle point must be
crossed along the former type of path, ie., from
valley to valley. Then, for large ¢, the integrand drops
off rapidly on either side of the saddle point and the
integral along this portion of the path is given
asymptotically by

I~ @n) e/ |f"(@) |}, (A2)

where o is the angle of the line of steepest descent
at the saddle point z,.

If the path is deformed properly, the only other
relative maximum of Re f, in addition to the saddle
points, must be at an end point. The leading term
from this part of the path is [assuming for con-
creteness that Re f(a) > Re £(b)]

I~ —“/f(a). (A3)

Formula (A3) provides the leading term in the
asymptotic expansion of the integral whenever the
path may be made to avoid all saddle points, or
when Re f(a) is greater than Re f at whatever saddle
points have to be traversed.

The integral (8) of the text is suited to treatment
by this method. Consider first the case p = integer.
There are then p — 1 saddle points, the solutions
of 2771 = g,

z; = /"™ exp [il¢ + 2x5)/(p — 1)],
k= he'®.

However, only the saddle point nearest the real
axis (j = 0) will ever have to be traversed, and
here formula (A2) leads to the result given in the
text, Eq. (20). The end-point contribution comes
from the origin, and gives a term ~1/«, which is
just the first term of the series (18). The higher
terms of this series are also reproduced by the higher
terms of (A3).

It remains to be established in what regions of
arg « each of the contributions is dominant. We
examine the first quadrant. Evidently, for

0 <argk < 3n(p — 1)/p, (A5)

the exponential in (20) has a positive real part and
is large. Also, the path of steepest descents must
pass through the saddle point, so the dominant term
in the integral is of the form (20). In the sector

inlp — )/p < argx < §nlp — 1)/p,  (A6)

the saddle-point contribution is very small and the
integral is dominated by the contribution from the
origin. In the next sector,

$r(p — 1)/p < argk < #x(p — 1)/p,

(A9)
j=071,"' 1P_2,

(A7)

1413

the saddle-point integral is once again large. How-
ever, the path may be taken so as to go to infinity
along lines of steepest descent without passing
through any saddle point; the same is true for all
the subsequent regions in which the saddle-point
integral has a positive real part. Therefore, the
integral (8) is large and given by (20) only within
the central sector, (A5), and goes to zero as 1/«
elsewhere.

To examine the behavior of f(k) when the poten-
tial goes to zero slowly, let

p=1+1/n,

The function f(2) has a branch point at the origin,
but this causes no difficulty. We can draw a branch
line along the negative real axis and proceed as
before. There is only one saddle point, located at

2 =K. (A9)

n = integer. (A8)

For large =, the saddle point lies on one of the higher
sheets of the Riemann surface, except when arg «
is within an increasingly narrow range centered
around zero. Outside this range, the steepest descents
integral can proceed along the valley from the
origin to infinity on the first sheet and always avoid
the saddle point. Therefore, formula (21) holds also
when p is of the form (Al).

If p is neither an integer nor of the form (Al),
there are, in general, very many saddle points (an
infinite number if p is irrational.) However, almost
all of them lie on distant sheets, and only the
principal one z, = hY® Ve’ can affect the
integral. The derivation proceeds as in the pre-
ceding cases, and the results (21) and (23) are,
therefore, of general validity, for any p > 1.

APPENDIX B

The statement that the Born approximation is
adequate for large k has to be proved. We first show
that the order of (k) is given correctly by the lowest
approximation. The nth iteration of (3) may be
written

—ikr

1, 1) = G [ dn Vo2 =) [ ar,

R f dT,, V(T,,)(]. _ e—2ik(r..—r,._,)). (Bl)

From this it follows, with k =
h = |k|, that

p + v, v > 0, and

60l <% [ anved e [ an,
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f dr, [V(r)] e =2,

a—1

IA

ol f " dn Ve f " dr,

o [l V) [ a7

_ r(e)T )
oy,
where
c= [ ar Vo), (83)
90) = fo " VO] & (B4)

Inequality (B2) places an upper limit on the sum
of all the higher iterations:

c/h 3@
51—c/h B

Let k be on the positive imaginary axis. Then, for
potentials of the form (7), for which 4(») = |I(k)],
it follows directly that

™

> ™)

n=2

(B5)

5 19| = oG,

(B6)

and the Born approximation is adequate for large
imaginary k. Since the maximum growth of f(k)
takes place along the positive imaginary axis, the
estimate of the order and type obtained from
f© (k) must be correct. The same conclusion holds
also when the potential is of the form (34), since
in the region which contributes to the asymptotic
behavior, the potential does not change sign.™®

The preceding argument does not suffice to prove
that (k) is everywhere the dominant term in the
asymptotic behavior, since elsewhere than on the
imaginary axis the first Born term I(k) is not as
large as 9(v). It is, therefore, necessary to study the
behavior of the higher iterations in greater detail.

The second Born approximation for f(k) has the
form

18 For a potential with an infinite number of changes of
sign, this argument would have to be refined. The argument
which follows would still apply, however.

L. SARTORI

0 = G “an Ve [ " dr, Vi)

X [1 + e-2|'kr. — e—2ikr1 —
=J1+J2+J3+J4- (B7)

We examine each of these integrals. The first is
clearly, in absolute value, < ¢°/4h*. In order to
estimate J,, rewrite it as

6—2"’5(’:—'1)]

1 -3
T = G [o dr, Viry)

X {( fo " - fo ) dr, V(rz)e"“""}. (B8)

In (B8) the first part is (1/2:k)*JI(k). In the second
part, the r, integral, over a finite range, is just of the
form discussed in Sec. IV, and is described asymp-
totically by Eq. (37) or Eq. (38). Its contribution
to J, is, therefore,

s [ e {veor +ogh)) @9

which is sufficiently small. For example, if V(r)
is of the form (7), the dominant term in (B9) is

'ika »/(p—1)
(const) exp [2@ B 1)(_7> ji (B10)

(ika)(7p-8)/(2z=—2)

in the region where the saddle-point integral is
dominant, and O(1/2¢k)* elsewhere.

The third term in (B7) becomes identical to the
term just discussed if the order of integration is
reversed, so its contribution is also given by (B9).
Finally, for J4 one has

— _1__ ® 2ikr,
T = i fo dr, Ve

% {( fo L fo ) drs V(rz)e'“'"’};

EARS (—2;1;550 IR + 0 /(2ik?).

(B11)

All the terms which make up f*’(k) are, there-
fore, at most O(f*’(k)/2ik). The higher iterations
can be similarly examined, and it is clear that each
succeeding iteration introduces an additional power
of 1/k. Hence, the estimate (B6) is valid for all k.
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The possibility of introducing distribution functions for the phase of a radial wavefunction at a
boundary is studied for the case of elastic scattering. The properties of a simple class of distribution
functions are discussed. The results are generalized to the solutions of an arbitrary number of coupled
Schrodinger equations which satisfy time-reversal invariance, provided there are no closed channels.

1. INTRODUCTION

HE use of potentials for the description of non-
relativistic nucleon—nucleon interactions has al-

ways been very popular due to the concise way in
which scattering data can be “stored” in the form
of a phenomenological potential model and due to
its transparency of interpretation. The long-range
and intermediate-range nucleon—nucleon potentials,
as they are known today, can be well interpreted as
due to the exchange of one or two pions and are in
agreement with a large amount of experimental in-
formation." However, it is now clear that the hope
of ever finding a nuclear potential which is defined
up to very short distances cannot be realized without
giving up certain desirable features as, for example,
energy independence of the potential. The region of
small distances (which plays an essential role in this
paper and which will be called the core region) is,
moreover, hard to explore. It is for that reason that
one often tries to avoid an exact treatment of such
a region, either by inserting an infinitely hard core
with sharp boundary radius, suitably adjusted to
give the proper binding energies of possible bound
states, or by giving the boundary conditions of the
wavefunctions at some finite distance r,. Many of
the (semi) phenomenological potential models®® are
of the first kind. The so-called boundary-condition
model®™® is of the latter kind.
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t Present address: Institute for Theoretical Physics, Uni-
versity of Nijmegen, Nijmegen, The Netherlands.
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In the present paper an alternate approach is
worked out, in which a core region (r < r,) and a
potential region (r 2> r,) are distinguished under the
assumption that the form of the potential is ac-
curately known in the potential region and nothing
is known with certainty in the core region. Instead
of claiming exact knowledge of the boundary condi-
tion on the wavefunction and its derivative at the
point 7,, the amount of knowledge is now represented
by a distribution funetion of the phase angle at that
point. So our approach is statistical in nature.

A distribution function for the phase angles at
the boundary radius leads to a distribution function
for the phase shifis in a quite natural way. In our
case, where we possess no knowledge of the core
region, we take a random phase distribution at the
point r, and obtain phase-shift distributions of a
particularly simple kind, depending on the form of
the potential. It is true that the amount of informa-
tion obtained in this way is less than in the boundary-
condition model, but the advantage is its clear
definition of the reliability of certain computed re-
sults. Moreover, it lends itself to generalizations,
for example, when absorption has to be taken into
account.

the same assumption about the exterior region as in the
R-matrix theory of nuclear reactions, namely that the bound-
ary radius is such that only nonpolarizing potentials (or no
potentials at all) are present outside this boundary. [See for
example J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear
Physics (John Wiley & Sons, Inc., New York, 1952) or
A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257
(1958)]. For nuclei, this is evidently a useful assumption
since a nuclear boundary is fairly well defined. For nucleon—
nucleon interactions, the determination of a suitable boundary
radius is a more difficult task under the given conditions.
No radius suggests itself a priori, and polarizing terms are
already important in the one-pion exchange part of the
potential. Also, with the present advance of high-speed
computers, there is no longer any reason to avoid the numeri-
cal integration of coupled Schrodinger equations. The
emphasis in this paper is completely placed on the exterior
region which contains polarizing potentials as well. For a
general method of solving coupled Schridinger equations
numerically, see J. J. de Swart and P. J. Eberlein, (Rochester
NYO0-9030, March, 1960) or J. J. de Swart and C. Dul-
lemond, Ann. Phys. (N. Y.) 16, 263 (1961).
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A few examples will illustrate the possible useful-
ness of the method. Let us depart from the radial
wave equation and consider a one-dimensional scat-
tering problem where r is defined from — « to 4
and where a potential barrier of finite but large
height is present, so that particles scattering from
the left or from the right cannot penetrate suffi-
ciently to pass through the barrier. If one describes
particles which scatter from the right, the wave-
function and its derivative, although small at the left
of the barrier, will never vanish simultaneously and
one is able to define a phase angle [cot™ (k™%¢'/¢¥),
k being the free-particle wavenumber] everywhere.
But it is clear that large variations of the phase
angle at a particular point left of the barrier will
not noticeably influence the phase angle at a point
right of the barrier. The exact boundary conditions
at — o are practically unimportant for the de-
termination of the shape of the wavefunction of the
particle coming from the right. So it seems that the
barrier itself provides the proper boundary condi-
tions to a large extent, and the boundary conditions
are completely determined when the barrier is com-
pletely impenetrable (as in the case of an infinitely
hard core). But this is not the whole story. Suppose
that one varies the phase angle left of the barrier
continuously. Then, for one very well defined value,
it seems as if the particle is indeed able to penetrate
the barrier, no matter how high. This is not sur-
prising, because one now describes the scattering
of a particle coming from the left; the roles of left
and right side bave been reversed. So there is always
a critical phase angle for which penetration is pos-
sible, and a barrier will therefore define the boundary
conditions, provided the conditions at the other side
of the barrier are not critical. The chances that
these critical conditions are met become increasingly
small, the higher the barrier is, but they are never-
theless there. Coming back to the case of the radial
wave equation, the conditions are the same except
that only values of r larger than zero are physical.
Scattering can only take place from the *right,”
i.e., large positive values of r. If now a barrier is
present, it will provide boundary conditions dis-
regarding the conditions at r = 0 as long as the
conditions at r = 0 are not critical. When they are
indeed critical in the sense of the one-dimensional
example given above, we have the conditions of
a resonance. This is not exceptional, since merely
varying the incoming particle energy will lead to
such a situation, where suddenly the phase shifts
show wild variations. To see what is happening be-
comes quite complicated in the case of coupled
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channels. The introduction of distribution functions
of the phase angles and mixing parameters is a
systematic way of obtaining insight into this kind
of phenomena as we will see in subsequent sections.

The purpose of this paper is to discuss a class of
distribution functions of practical importance and
mathematical simplicity, and it is applied only to
sufficiently simple examples to serve as illustrations
of the method. After a mathematical introduction
(Sec. 2), we introduce distribution functions for un-
coupled equations (Sec. 3), coupled equations
(Sec. 4), and finally the phase shifts are discussed
(Sec. 5). A general discussion follows in Sec. 6.

Throughout this paper the symbols & and [ are
reserved for the n X » diagonal matrices of which
the (positive) eigenvalues represent the free-particle
wavenumbers, and the orbital-angular-momentum
quantum numbers of coupled channels, respectively,
while r is always a distance between interacting
particles. The symbol 8 is reserved for the scattering
matrix.

When no reference is made to a physical meaning
of certain quantities, we will use Latin capitals for
n X n matrices and script capitals for 2n X 2n
(or 2n X n) matrices. It is sometimes necessary to
refer to the first or to the last # columns for a
2n X 2n matrix; in that case, subscripts « and 8 are
used to refer to the 2n X n submatrices under con-
sideration. Latin lower-case characters stand in
general for 2n-dimensional column matrices. The
symbols B and ® are reserved for certain orthogonal
matrices, I and 4 stand for identity matrices, while
@ and Q are reserved for certain symmetric matrices.
Primes indicate derivatives with respect to r and
the symbol ~ stands for transposition.

Special symbols are introduced whenever certain
quantities have a physical meaning. We call ¢(r)
(or just ¥) the n X n matrix representing n arbitrary
independent solutions of the wave equation; ¥,(r)
is always a column matrix representing one particular
solution, and ¥,(r) is the corresponding row matrix.
The diagonal matrix of which the eigenvalues play
a role as phases is denoted by ¢, while the eigenvalues
are indicated by ¢; (¢ = 1, --- , n). Phase shifts
are indicated by 6 (the diagonal matrix) and §;
(the eigenvalues). The symbol p is reserved for the
distribution function. Finally, the symbol det stands
for the determinant of a matrix.

2. MATHEMATICAL PRELIMINARIES

In this section we set up a scheme for the de-
seription of n coupled nonrelativistic channels suit-
able for the purposes of this paper. We only consider
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the radial part of the wave equation and we assume
that the reduced channel masses are not necessarily
equal. Also we assume that no closed channels are
present.

As a starting point we write down the radial wave
equation for coupled channels:

RRCEC)
e l(_l:%i) - k]"”' = Wiy:, (2.1

where m is the diagonal matrix of the reduced channel
masses and where the elements ¢,; (7 = 1, -+ , n)
of the column matrix ¢, are normalized such that,
in the case of purely outgoing waves, |¢.;” and [¥.|*
are equal if they represent waves of equal outgoing
flux. The matrix V(r) is proportional to the ‘“po-
tential” matrix and we assume that it is sym-
metric (as a consequence of time-reversal invariance)
and real, although this last requirement is not
strictly necessary for our method to be valid in
principle. The matrix

CRECRTEESE

in which [ is an » X n diagonal matrix, is also real
and symmetric and from now on we will refer to
this as the “potential,” since only in the discussion
of phase shifts will it be necessary to make a dis-
tinction between the actual potential and the cen-
trifugal barrier term.

If we make no distinction between regular and
irregular solutions, Eq. (2.1) has 2n independent
solutions which can be written in n X 7 matrix
form, ¥. and ;. For the general solution we have

'P = ¢aMa + KbﬁMﬂ,
EW = KM+ R,
or in matrix form,
v _ “ Vo o ¥
vl e K

2.9)

(2.3a)

iz

M,

, (2.3b)

M,

when we want to have all columns of

where the 2n X n matrix must be nonsingular

¥
Ety

to

be independent.

Without loss of generality and disregarding over-
all normalization, we may take, at an arbitrary
point r;,
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O A SR
) =0, k) = 1.
We then have, at another arbitrary point r,,
W(rz)
B (rs)
_ | vl sl | v |
KWl BTl BT Y ()

which means that if the boundary conditions at
r = r, are known, the conditions at », can be ob-
tained by simple matrix multiplication. This demon-
strates that

‘i yﬁ' « (?'2) i’ﬁ(ri’) (2 . 6)

Wra, 1)) = ‘
Kl k)

contains all the information about the set of Fgs.
(2.1) which is of interest for the construction of ¥
and ¢'. Notice that the matrix ¥(r,, r,) (for ry > 1))
consisting of the last n columns of (2.6) actually
represents the (unnormalized) wavefunetion and its
derivative at the point r, when an infinitely hard
core is present at the point r,.

The matrix ¥ has several interesting properties
which we will now discuss.

First of all one easily verifies that

Wlry, )Wy, r5) = ¥lry, r3), (2.7a)

and as a consequence, we have
By, 1) = ¥ ' (ry, 1), (2.7b)
¥, r) = 4. 2.7¢)

Secondly, the matrices are symplectic. Symplectic
matrices are matrices of the form

Q= Aal AB] ,
Aaz Aﬂ2
which have the property
galAc& - -g:azAal = 0, (2.83:)
15114;92 - gﬂzAﬁl = O, (2-8b)
gaIAﬁz — gazA.Bl = I. (2.80)
The following identity follows easily:
Ao Aal™ _ I 4p —4 2.9)
Aaz Agg "gc& *Zal

It is also readily verified that when @ and ® are
symplectic, also @® is symplectic. The 2n X 2n
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identity matrix is symplectic and so is the inverse
of every symplectic matrix. So these matrices form
a group, known as the symplectic group.’® From Eq.
(2.9) it follows that

Aa] Aﬂl
Aa2 Aﬂ2

but from reference 10 we learn that the group is
simply connected and therefore only the 4+ sign
can hold, so

det = +1,

det @ = 1. (2.10)

We will call the 2n X 7 matrices @, and ®; also
symplectic due to Eqs. (2.8a, b). The proof that ¥
is symplectic is a consequence of the symmetry of
W in Eq. (2.1):

@/d) (Pl WL ~ P ¥.) = $uW — W)y = 0,
@/dr)(Fek™ ¥p — ok ds) = 0,  (2.10a)
@/dn( Tk Y — Pk ) = 0.

Taking into account the conditions, Eq. (2.4), at
the point r, we find that

Juk'Wl — T Y. = 0, (2.11a)
Yok '¥h — Jhk s = 0, (2.11b)
ok s — JlkT s =1, (2.11¢)

which are exactly the conditions Eq. (2.8) for ¥
to be a symplectic matrix.

The property Eq. (2.9) which is now also valid
means that the generally laborious job of taking
inverses of matrices is now reduced to a mere re-
arrangement of the same matrix elements. The prop-
erties Egs. (2.7) and (2.9) together with Eq. (2.5)
make it profitable to make the matrix ¥ the first
object to be computed numerically when a numerical
integration of Schrédinger equations is desired. Since
¥ tends to become very singular when r, and
are taken far apart, it is advisable to compute a
series of matrices ¥, namely ¥(r, r) forr, < r < ry,
¥(r, 1) for r, < r < 13, ete., where ry, 7y, -+ are
not too far apart. The property Eq. (2.7a) allows
one to calculate the wavefunction and its derivative
at any arbitrary point r when arbitrary boundary
conditions exist at any other arbitrary point .
Another example of the usefulness of ¥ is, that one
obtains a quick insight into the influence of varia-
tions in the hard-core radius on the wavefunction.

Let us now leave the matrix ¥ for a while and
study the properties of the symplectic matrices @

10 H, Weyl, The Classical Groups (Princeton University
Press, Princeton, New Jersey, 1947), 2nd ed.
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further, since they turn out to be important also
in other aspects which are of use to us. First note
that when @ is symplectic, @ is also symplectic,
which gives a set of relations slightly different than
those of the kind in Eq. (2.8). There is also the
question of parameterization. From Eq. (2.8) it
follows that @ can be rewritten in the form (pro-
vided det A 5 0)

A AQg
szA g_] + QaAQﬂ

where A is arbitrary nonsingular; ¢. and s are
arbitrary symmetric. We see that if @ is real, it
can be parameterized by 2n° + n real parameters
and if complex then by twice as many.

We will now discuss some special classes of sym-
plectic matrices of interest to us.

The orthogonal symplectic matrices not only
satisfy Eq. (2.9), but also

@ = . (212

‘AM Ap| ™" _ A« A
Aus Agl I Anl
and we find that

Ay = Ap and A, = —A4g.

The general form of the orthogonal symplectic
matrices is therefore

Aal
Aa?

—Aa2
Aal

® = 1 (2.13)

It follows that
;{alA(ﬂ = ga2Aa1v Aalgaz = flazgul, (2143)
Za1‘4al+ga2Aa2:A4nlga1+Aa2ga2=1' (214b)

In order to obtain a suitable parameterization, note
that the matrices A.,4., and A, 4., are sym-
metric, can be diagonalized by orthogonal matrices,
and have the same eigenvalues. Let B® be the matrix
of the eigenvalues and let B, and R,, respectively,
be the diagonalizing matrices; then B can always be
chosen such that

A, = R,BR,. (2.15)

Adopting suitable conventions, one is able to elimi-
nate ambiguities concerning the ordering of the eigen-
values in B and minus or plus signs, and one can
make an unique parameterization of 4., by giving
the 3n(n — 1) independent (real or complex)
parameters of R;, the n (real or complex) parame-
ters of B and the $n(n — 1) parameters of R,.
From Eq. (2.14b) we find
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AwpA., =1 —RBR, =R — BHR,,
ZazAaz =1- R232R2 = Rz(I - B2)R2,
and from this it follows that R, dig,gonalizes the ma-
trix A 124 .2, and B, diagonalizes 4 ,»4 ... The eigen-
values of both matrices are those of the diagonal

matrix I — B’. One can then adjust the signs of
(I — B** such that

A, = R — B)'R,.

The matrices R;, R, B and (I — B’)} would have
been real if ® were real, so we see that for real orthog-
onal symplectic matrices the eigenvalues of B never
exceed unity in absolute value. It follows that there
exists a real diagonal matrix 5 such that

Aal = Rl(sin n)Rz,
Ao = Ri(cos n)R,,

and one can restrict the eigenvalues 7; to a region
+ixr > 9, > —3x. It follows that ® can be pa-
rameterized by n® real parameters if ® is real, and
by 2n” real parameters if ® is complex. For real ®,
the ordering convention %, > %, 2> <+ 2 7. and
proper sign conventions for R, and R, make the
parameterization unique. Note that the vector &,
is always specified by exactly the same parameters
as ® itself.

Another class of matrices is important for us,
namely the symmetric symplectic matrices. They
appear as coefficient matrices of quadratic equations
(representing some kind of ellipsoids defined in a
2n-dimensional space). The general form of these
matrices is

o - ”A c

¢ B
where A = A, B = B. If A is nonsingular, one can
A AQ

write @ in the form
QA A™ + QAQ ‘

where @ is symmetric. This follows again from Eq.
(2.8). We find, therefore, that @ can be parameterized
by n(n + 1) real (complex) parameters. Note that
AB = I + (? so that one can find an arbitrary @
by choosing A and B arbitrary symmetric. The
matrix @ being symmetric and symplectic, can be
diagonalized by an orthogonal symplectic matrix ®.
(See Appendix I.) If all matrices involved are real,
then the diagonal form of Q is

AT 0
0 A+1

(2.16)

, (2.17)

Q=

, (2.18)

@diag =
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where A is an arbitrary real diagonal matrix. One
can now order the eigenvalues of Qu,, such that
those < 1 are all in A, if all eigenvalues are positive
(the only case of interest).

Note that the matrices ® do, but the matrices @
do not form a group. It is easy to prove that the
group of all real orthogonal symplectic matrices s
isomorphic with the group of unitary matrices. (See
Appendix 1.) This was first noticed by S. Minak-
shisundaram.™

Finally there are the unitary symplectic matrices.
We leave these out of the discussion here.

After this discussion of the different types of
symplectic matrices, we return to Eq. (2.1) and the
matrices ¥(ry, r.). Let us define a 2n-dimensional
vector space in every point r > 0 and let v be an
arbitrary vector in that space. Now consider ¥(r,, r3)
as the transformation matrix which maps the vector
space at 7, onto the vector space at r,. We have, by
definition

vir) = ¥, r)v(ry), (2.192)
which can alternatively be written as

v(r) = Wy, ro)o(ra), (2.19b)
or

8(r) = 0(r)¥(n, ), (2.19¢)

where v and ¥ are just the equivalent column and
row matrices. Property Eq. (2.10) now states that
the Jacobian of the transformation is unity so that
the volume of the parallelopiped spanned by 2n inde-
pendent vectors v in that space is invariant under
the transformation. Since the transformation Eq.
(2.19) is linear we find that quadratic expressions
transform into quadratic expressions. Since the trans-
formation is real and unimodular, we conclude that
ellipsoids transform into ellipsoids with the same
volume.

The equation for the unit sphere is #z =
equivalently x-x = 1, or [x|* =
for an ellipsoid is

1 or
1. The equation

G = 1,

where G is real and symmetric and has positive
eigenvalues. The diagonalizing matrix is real orthog-
onal and specifies the direction vectors of the prin-
cipal axes of the ellipsoid. The eigenvalues of §~*
are the squares of the lengths of the principal axes.

How does a unit sphere at r, transform into an

1 S Minakshisundaram, J. Ind. Math. Soc. 19, 105
(1955).
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ellipsoid at #? From Eq. (2.19) we have

1 = 2(ro)x(ro)
) (ro, ¥ (ro, Na(r) = B@)IC(ro, ) (r),

where 3C is not only symmetric but also symplectic.
From Eq. (2.18) we see that the principal axes then
go in pairs such that the product of the lengths of
the axes of each pair is just one.

It is also useful to introduce generalized 2-com-
ponent vectors of the general form

U = (U,, U,),

where U, and U, are n X n matrices.
Alternatively we use the matrix

I

I

(2.20)

or the matrix
U = ”(71 U 2”

as possible equivalent replacements of this vector.
In every point r, instead of defining a 2n-dimensional
linear vector space, we could define a 2-dimensional
vector space in which the vectors have matrix com-
ponents. Again, let ¥(r,, r,) be the transformation
matrix which transforms a vector at r, into a vector
at r,. The following notations are then equivalent:

W) = Wy, r)Ur),
‘u'(rl) = ¥(r, 7’2)‘“-("2),
‘i(rx) = ‘il(rz)‘i’(rl; 5).

We say that the generalized vector £ satisfies the
equation of the generalized ellipse if

¥xx = I,
where 3C is defined as in Eq. (2.20), i.e.,

(2.21)

3(ro, ) = ‘T’(rm ¥ (ro, 7),

if the generalized ellipse is the transform of a genera-
lized circle at 7. Since J is symplectric, a 2n-dimen-
sional unit sphere serves as generalized circle, but
not every 2n-dimensional ellipsoid serves as gene-
ralized ellipse in this picture.

We illustrate the contents of this section with an
example.

Suppose that one has n coupled channels and that
for r, < r £ r. a constant potential exists. For
r > r., the potential is zero and no centrifugal barrier
is present. We have for the wave equation, Eq. (2.1),

k7Y = (~&/m)HVo(k/m)7F — k)Y

ro <r<r), (222
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A2

where V, is a constant (i.e., independent of r), real,
symmetric matrix with positive eigenvalues. Define
the matrix «*:

K = (km)Vo(k/m)™d + K2,

r>r),

and let x have all eigenvalues positive. One obtains
the following set of equations:

" o— 2.
‘pt‘ - K kbi (TO S r S 7'l:)v (2‘23)
Vo= =k, (r>r,).
The matrix «* has the property
&k = ki, (2.24)

and if we assume that all eigenvalues of «* are dif-
ferent, then we can find a similarity transformation
U which diagonalizes «*:

= UslU ™,
50 that
FHUTRT™ = (U kT ™).
Since o is diagonal and nondegenerate, it follows
that U7'kU™" is diagonal, so that this matrix com-
mutes with any of the square roots ¢ of ¢°, each of
which must be diagonal. In fact, every function of

o is diagonal and commutes with U™'kU™", so we
conclude that

(2.241)
and generally
16k = kf(®).

The matrix ¥(r, r,) for r, < r < r, can now be
constructed:

(2.24b)

W(r, 1o)
cos k(r — 7o) K sinklr — o)k . (2.250)
~kksink(r—ry) k7' cosk(@r —ro)-k
or, equivalently, with (2.24b),
¥r, 1o)
_ . cos k(r — 7q) ki ! sin &(r — 7o) . (2.25b)
— k7Y% sin k(r — 7y) cos k(r — rq)

One can now easily check that ¥ is symplectic and
that Eq. (2.7b) is valid. For » > r, we have simply

Wr,r) = cos k(r — r.) sink(r — r,) . (2.26)

—sin k(r — r.) cosk(r — r,.)
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The combination rule, Eq. (2.7a), gives for r > r.
‘I’(Tv To) = ‘I’(rv rc) '\Il(rcy TO)

cos k(r — r.) sin k(r —r,)

—sin k(r — r,) cosk(r —r,)

- 7'0)1

cos k(r, — 7o)

cos k(r, — 7o) k™' sin &(r,

X . (227

i
i——k"x gin (r, — 7o)

The last » columns represent the solution for the
case that there is an infinite hard core at r = 7,.

For the construction of 3C(r,, r) (ry < r < 1),
one needs the inverse of Eq. (2.25) and its trans-
pose. The eigenvalues and eigenvectors of 3¢ charac-
terize the shape and position of the ellipsoid corre-
sponding to 3C. Even in this simple example these
quantities are hard to obtain and we will not do this.

We close this section with the remark that al-
though 3C(r, r) is not the inverse of 3¢(r, ro), their
eigenvalues are each others inverses, and due to
property Eq. (2.18), the eigenvalues are in fact the
same. So J¢(ro, r) and 3C(r, r,) represent ellipsoids
of exactly the same shape and size, but different
orientation. In other words, a sphere at r, trans-
forms into an ellipsoid at r, and a sphere at r trans-
forms in an ellipsoid at 7, with the same shape and
size, but different orientation.

3. DISTRIBUTION FUNCTIONS WHEN COUPLING
IS ABSENT

In this section we discuss the case n = 1 (no
coupling). In every point r we define a two-dimen-
sional vector space in which ¢ and k~'y are the
two components of each vector. The phase ¢ =
cot™ (k7'Y'/¢¥) is just the angle which such a vector
makes with the k™'Y’ axis.

Now consider a vector v(r,) and its image v(ry)
at two different points r; and r,. A linear unimodular
transformation transforms v(r,) into v{r,), so when
v(r,) is rotated over an angle de(r;), then v(rz)
will be rotated over an angle de(r,) such that
[v(r)® de(r)) = |[v(r)|® de(rs), ie., the area de-
seribed by each vector is the same. Now when there
is a certain probability that vector v(r,) will be found
within the interval de(r,), then this probability must
be the same for vector v(r,) to be found within the
interval de(r,). So the probability densities for v(r;)
and v(r,) have a ratio which is equal to that of
|v(r)|” and |v(ry)|*. If one now defines a probability
“amplitude” as the square root of the probability
density, then this amplitude is proportional to |v|.
We see therefore, that a radial plot of the probability
amplitude in the two-dimensional space transforms as
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~1st K=ty
l; W'e) '

VU,
VG

L),

Fia. 1. Sketch of the way in which a random distribution
at a point r = r, transforms into a distribution which favqrs
certain phase angles at 7 = r;, under influence of a potential
or centrifugal barrier between rq and r,. Uncoupled case.

if every point on that plot were a vector. Particularly,
if that plot were an ellipse, it is an ellipse at every
point 7. The area under the allowed part of the
ellipse must be one. We will call the probability
density as function of ¢ the distribution funetion.

What are the requirements for a distribution func-
tion which tells us that the boundary conditions
at a particular point r, are unknown? If the potential
(including the centrifugal barrier) is everywhere
equal to that at infinity, i.e., zero, it is reasonable,
that when one lacks information at a particular
point, one lacks that information everywhere, so for
this case the corresponding distribution function
must be the same for all r. It must be an invariant
under the transformations

cos k(r — ro) sink(r — 7o)

‘I,O(r! TO) =

—sin k(r — 1) cos k(r — ro)

where the index 0 of ¥ indicates that there are no
potentials. Since ¥, is orthogonal, only circles stay
invariant under the transformation. Therefore a
circle is a suitable radial plot of the probability
amplitude for this case. Now, if potentials are
present, it is reasonable that our information varies
from point to point; a circle still represents lack of
information if one wants to make a mathematical
definition of “lack of information” which is inde-
pendent of the presence or absence of potentials.
We discuss only those situations in which we indeed
lack information about the phase at some point 7,;
therefore we are only concerned with circles and
ellipses as radial plots of the probability amplitude.

Suppose that for r > r, a repulsive potential
exists, and that the phase at r, is unknown. A random
phase distribution at r, represents this case. In
Fig. 1 the screening effect of the potential is demon-
strated, since at a point r, which lies outside the
barrier, the distribution is not random any more,
but there is a preference for certain phases, namely
those which lie near the longest axes of the ellipse.
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Fia. 2. Square-well potential with unknown core region or
“black box.”

The more screening occurs, the flatter the ellipse,
which means that the barrier defines the boundary
conditions on the wavefunction to a larger extent.
For an impenetrable barrier, the ellipse would be
infinitely long and flat and the phase is exactly
known.

Suppose that one had a circle at the point 7.
This would then have been the transform of an
ellipse at r,. According to the discussion in Sec. 2,
this ellipse has the same form and shape as the
ellipse at r, due to a circle at r,. This just means
that the barrier is as impenetrable from one side
as from the other. The direction of the longest axis
of the ellipse at r, indicates the critical phase at
which the phase at r, becomes uncertain. This has
well-known consequences: Suppose that one varies
the energy of the incident particles. Keeping the
phase distribution at r, random, the elliptical phase
distribution at r, changes its shape and orientation
gradually and also the critical phase at r, changes
continuously. At one particular energy, the critical
phase coincides with the actual phase of the wave-
function at r,. At that moment, the phase at r = r,
varies wildly as a function of energy, and a reso-
nance peak shows up in the cross section. But
a priort we could not know where these peaks oceur,
because the behavior of the ellipse at that energy
was strictly normal. We have here an instance of a
resonance which is purely due to the conditions in
the unknown region r < r, and which does not show
up in this manner.

Resonances can also occur due to conditions in the
known region of the potential and the following
example illustrates that they then indeed show up.
Suppose that outside the point r, we have a constant
negative potential up to the point r,, outside of
which the potential is zero. The region 0 < r < 7,
is unknown and we assume that the phase distri-
bution at r, is random. (See Fig. 2.) Let k, be the
wavenumber inside the well. A simple way of seeing
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what happens with the circular distribution is to
change scales and consider the bottom of the well
as the zero-potential level. Figure 3 shows how this
change of scales transforms a circular distribution
into an elliptical distribution which now just rotates
in this new system when r increases. At the point r,
the rotation has taken place over a certain well-
defined angle. Transforming back to the old system
we see that the rotated ellipse stretches itself in the
¥/ direction so that certain phases close to 0° are
favored, as is clear from the figure. The deeper the
well, the flatter the ellipse and already a small
rotation will cause the actual distribution to favor
phases very close to 0°. However, when a rotation
over a multiple of 7 has taken place just as r = r,,
one has the original circular distribution back again.
So, while in most of the cases one can be quite sure
that the phase at r, is close to 0°, there are instances
where the phase is unknown. This can oceur in
reality when the incident energy is varied. The
sudden appearance of a circular distribution at r,
when the energy is varied now indicates the pos-
sible appearance of a resonance. Why then does the
position of this resonance depend so critically on the
position of r,? The answer is that the conditions for
r < r, are only seldom so unknown that a com-
pletely random phase distribution at r, is war-
ranted. In this case, the smallest amount of con-
tinuity of the potential at both sides of 7, would
have made a random distribution unrealistic. Never-
theless, one might have reasons to believe that the
potential indeed changes radically at r,, such that
our information about the phase is lost. It is then
indeed likely that a resonance occurs at the pre-
dicted energy.

4. DISTRIBUTION FUNCTIONS WHEN COUPLING

IS PRESENT

We now generalize the ideas of Sec. 3 for the case
of n coupled channels.

The 2n X n matrix

¥(r)
A0

represents the complete solution of the set of n

(4.1)

k't ) k3'y trg) ko () k= i)

™ e N
i) Yirg) WYire) Vi)

F1e. 3. Sketch of the way in which a random distribution
changes under influence of a square-well potential.
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coupled wave equations when the boundary condi-
tions are specified. The matrix

vM
Ky M
is specified by exactly the same boundary conditions
and represents exactly the same physical situation.
In order to define phases and mixing parameters

which are independent of M, we parameterize Eq.
(4.1) as follows:

(det M = 0)

¥ = 7(8in ¢)o,

Ey o=
where 1 is orthogonal, ¢ real diagonal, and ¢ arbitrary
nonsingular. One can determine r and ¢ by noting
that

(4.2
7(cos ¢)o,

kYN = r(cot )7,

then 7 is just the diagonalizing matrix and cot ¢
contains the eigenvalues. The symmetry of the left-
hand side guarantees that this is possible. The ¢
can be obtained immediately and can be called the
“length” of the two-dimensional vector with matrix
components. The parameters specifying = will be
called the mixing parameters, while the diagonal
elements of ¢ are called the phases. For the phases
we set the limits +37 > ¢, = -+ > ¢, > —1nr,
which can always be satisfied by proper handling
of 7. In order to define distribution functions, we
ask for the probability that the phases and mixing
parameters be found within certain infinitesimal
intervals of these parameters. It is useful to define a
set of invariant intervals d&,,- - -, d&, [v = 3n(n — 1))
such that the probability for finding the actual
mixing parameters within these intervals is always
a constant for a random distribution of r matrices.
A more exact definition is given in Appendix III.
Suppose that the matrix

(sin ¢’

7*(cos )"
at the point 7, transforms into

7(sin p)o

7(cos p)o

at the point r. Let a distribution function p° be
given such that

P’ de - dE dey - -+ dih

is the probability for finding the phases and mixing
parameters within the proper intervals. One ecan
then calculate the corresponding distribution func-
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tion p at r. In Appendix II it is shown that

0!:11;11_ sin (p; ~ ¢;) [det . ]ﬂ+1
p = p

4.3)

Isin (o — ¢ | Ldet o’
i<y
Here we see immediately, that if p° does not con-
tain the factor [ [:; sin (¢! — ¢}, the p has a series
of unwanted poles. One concludes that every realistic
distribution function must contain the factor

[Isin (o: — @)

1<j

(4.3a)

if there is coupling between channels. Phases have
therefore the tendency to avoid being close together.

Now let us find out whether it is possible to find
a distribution function which corresponds to our
lack of knowledge of the boundary conditions at a
particular point. Again, if there are no potentials,
this must imply that we lack that knowledge in
every point. Let us consider that case. Our matrix
¥ has then the form

cos k(ry — ry) sin k(r, — 7,)

Uory, 1) = , (4.4)

—sin k(r, — 7,) cos k(r, — r,)

where all the submatrices are diagonal. This matrix
is orthogonal and symplectic, but is a special case.
The random distribution function must be invariant
under this transformation, but that does not
uniquely specify its form as it did in the case n = 1.
We therefore approach this problem differently.

We have seen in Sec. 2 that ®s, representing the
last n columns of a real orthogonal and symplectic
matrix ® is specified by just as many parameters
as ® itself. Suppose that ®s specifies the complete
boundary conditions on the wavefunctions at the
point 7,. Then the “length” ¢ of ®; has a deter-
minant equal to 1, in fact o is orthogonal. In analogy
to the case » = 1, where a circular distribution
meant that the direction of a vector in the two-
dimensional space is randomly chosen, we now
postulate that the distribution corresponding to a com-
plete lack of knowledge of the phases and mixing
parameters is a random distribution of the matrices ®Rs.

One obtains a random distribution of ®; if one
has a random distribution of the matrices ® which
form a group; randomness is quite naturally defined
in group theory, and this is done in Appendix I1I
where a distribution function for a random distri-
bution is found:

p = PO[H sin (¢; — ¢;)].

i<i

4.5)

One sees that the factor Eq. (4.3a) is present. More-
over it is invariant under the transformation Tq.
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(4.4) since it is invariant under all real orthogonal
and symplectic transformations.
What happens under general transformations
Y(ry, r,)? From Eq. (4.3) one merely obtains
p = po[]] sin (o: — ¢)]-[det o]"*".

i<i

(4.6)

We will be concerned with distribution functions of
this kind.

Now ¥(r, r,) transforms a sphere at 7, into an
ellipsoid at r; in some way we can consider the
sphere as representing our state of ignorance of the
phases and mixing parameters, all “vectors” of the
type Eq. (4.1) having unimodular “length,” while
the ellipsoid indicates that we possess some knowl-
edge at the point 7. Equation (4.6) suggests that the
flatter the ellipsoid, the better the information we
have. Ellipsoids therefore play an essential role, and
knowledge of the directions and magnitudes of the
principal axes is important. It is clear that det «
is determined whenever such an ellipsoid is known
and a particular set of phases and mixing parameters
is given.

5. DISTRIBUTION FUNCTIONS FOR PHASE SHIFTS

So far we discussed phases and their associated
mixing parameters. What one commonly calls mix-
ing parameters are those which are associated with
phase shifts. It is in this kind of parameters that we
are interested. In order to be able to find them at
all, the potential must approach zero sufficiently
rapidly and we assume that this is the case.

Phase shifts are found by comparing the physical
wavefunctions with the free wavefunctions which
are of the Riccati~Bessel type. For sufficiently large
values of r, the 2n X n matrix representing the wave-
funetions and their derivatives in the absence of a po-
tential (but with centrifugal barriers still present) is
sin (kr — iir)

cos (kr — Lix)!
Now ¥,(r, 0) as defined in Sec. 4 is just

cos kr sin kr

L

—sin kr cos kr

8o when all [; are equal to zero, the last n columns
represent free particles for which all phase shifts
must be zero. If one now defines

To(re) = lim ¥o(0, N¥(r, 7o),

r—o

(5.1)

then the phases of
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Y(ro)
k™ (ro)
are just the phase shifts when all ; = 0, and the
boundary conditions at r = r, are as specified: The
phase shifts should be zero when r, = 0, ¥ = ¥,,
and when ¥(0) = 0.

When there are I; which are unequal to zero, a
correction must be made for the extra shift of —4lx.
The matrix

To(ro)-

cos (kr — Llr) sin (kr — 3ln)

—sin (kr — Llr) cos (kr — iix)

should replace ¥,(r, 0). It is not proper to call this
¥,(r, 0) since it does not satisfy ¥,(0, 0) = 4.
Instead, we define a correction factor

1 —gin t
Q, = cos 3lr sin 3ln , (5.2)

sin 1lr  cosilx

which commutes with ¥,. Then @;¥.{(r, 0) is the
proper replacement of W¥o(r, 0). Note that 2, is

orthogonal, real, and symplectic.
The generalization of Eq. (5.1) becomes
I'(re) = lim $,%,(0, r)¥(r, ro),

700

(56.3)

and the phases of

Y(ro) &
(o) 2

are the phase shifts in which we are interested.
Here ¢, and {; are n X n matrices satisfying {{, =
Eot. Write

I'y(ro)

.{-l = G(Sin 5)”1
{2 = G(COS 6)"‘)

where ¢ is real orthogonal and represents the mixing
parameters; 8 is real and diagonal and represents
the phase shifts, and u is real and nonsingular. If
then at r = r, the phases are unknown, and the
2n X n matrix representing the wavefunctions and
derivatives has an unimodular “length’, the dis-
tribution function for the phase shifts and mixing
parameters becomes

p = polII sin (8; — 3)]det w)*',

1<y

(5.4)

since T'; is real and symplectic.
Once the phase shifts and mixing parameters are
known, the scattering matrix 8§ is determined,

S = e, (5.5)
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which is symmetric as it should when time-reversal
invariance holds.

Let us now write down more explicit forms for
the phase-shift distribution functions. First we con-
sider n = 1, where an ellipse with longest principal
axis of length A" represents our distribution. Let
8 be the phase shift belonging to the direction of
this axis. The length ¢ of a vector satisfying the
equation of the ellipse is then

o = [\?cos® (5 — &) + A\ %sin® (5 — &),

and the distribution function p is proportional to
the square of this,

p = po[A? cos® (8 — &) + A 7sin® (6 — &))", (5.6)

For 6 = &, this shows a peak which becomes sharper
when X decreases. If we introduce 8, by

tan 5, = A%, (5.7)

then it is equally likely that § will be found between
8, — 6, and & -+ 4. than outside this range (when
3w > 8 > —3%7). When A is very small, then p re-
duces to half its peak value at 8, & §., which makes
it justified to call 25, the half width of the peak.
The analytic form of p in that case is equal to that
of a common resonance

p = pX*/[(8 — 8)° + \']. (5.8)

In this limit of small A it is perhaps useful to charac-
terize the ellipse by the location of a simple pole
in the complex § plane, namely p becomes singular
when & = & = 4\’, which contains just all the
parameters of interest.

The case n # 1 is more complex. Let

X =1 (5.9)

be the equation of the generalized ellipse repre-
senting the phase shift distribution. Here % is de-
fined by

e(sin d)u

X = , (5.10)

e(cos d)u

where ¢ is orthogonal and represents the mixing
parameters; § is the matrix of the phase shifts, and
p is the length of the generalized vector. We are
interested in det x and we find

. -1
(et u)® = [det {H(sin 8 (cos d)e||-ge- 512 H .
€cos &
(5.11)
Parameterize 3¢ as follows:
o= || U Uil A7 0] IO, —-(72, (5.12)
~-U, Uilllo &A% |0, U,
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where A™' represents the lengths of the n largest
prineipal axes, and

U1 = Go(COS 50)110,
U2 = €0<Sin 50)1’0,

where again ¢, and », are real and orthogonal, and
8, real diagonal. Inserting Eq. (5.12) into Eq. (5.11),
one sees that the expression between braces can
be factorized into two complex matrices which are
each other’'s Hermitian adjoint. Call this product
HH', then |det H® = det (HH') and H is sufficient
for finding det u . One finds for H:

H = {(sin 5)ée,(cos &) — (cos 8)éeo(sin 8o) jwoA™"
+ ¢{(sin 8)ee,(sin 8,) + (cos 8)ze,(cos &) }woA. (5.13)

This form can be simplified even further if one
introduces the real symmetric matrix

A = ede.
If one then tries to solve the set of n* equations
H=0
for A, then one finds a complex and generally asym-
metric solution A,, namely
tan A, = ¢ f{sin & — 7 cos 8, A’%))}

X {cos 8 + 1 sin SoroA’s)} & (5.14)

In terms of tan A,, the matrix H has a simple form:
H = & cos Altan A — tan A,)e¢
X {(cos do)roA™" + i(sin do)weA}.  (5.15)

Here det @ = det ¢, = 1, and the factor between
braces is independent of A, so its determinant can
be absorbed into the constant p, in the expression
for p and we find from Eqs. (5.4), (5.11), (5.12),
and (5.15),

p= PO[H sin (8; — 8,)]

i<j

X [det (cos A)- [det (tan A — tan A,)|]]"™". (5.16)

If »,A%5, is very small, which occurs in the case of
barriers which are hard to penetrate, Eq. (5.14)
can be simplified by omitting higher-order terms in
A%, and we obtain

tan A, = e{tan 8, — i(cos &) ' (voA’5s)(cos 8,) "},
(5.17)

which is a symmetric matrix. Introducing

Ay = €008,

we obtain from Eq. (5.17)
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tan A, = tan A,
— 4(cos Ao)M(eoAhoto)(cOS Ag) . (5.18)

Here Eq. (5.18) expresses that the highest-order
singularity in p occurs near the directions of the
largest principal axes of the ellipsoid. From Egs.
(5.16) and (5.18) we obtain a good idea of how p
depends on A,

We close here the discussion of the distribution
functions.

We demonstrate the contents of the first half
of this section with an example similar to the one
in Sec. 2, except that we now include higher !
waves. We will assume that all channels have the
same [ value. Instead of Eq. (2.22), we use

' = [—(k/m)  Vo(k/m)"
+ U+ D=kl (e <r<r), (5.19)
E o= kA4 D) /rP =k, (r> 1),

where V, is again independent of r and real sym-
metric with positive eigenvalues. Define again a
matrix ”:

K = (km)!Vo(k/m)™ + k°,

where « is that square root of « which has positive
eigenvalues. One then obtains the set of equations

v = [l + 1)/7'2 - K2]¢i (ro <r < 1),
o= W+ DA = Fl > 1.

Assuming again « to be nondegenerate, x can be
found uniquely, and again,

fok = kf(®)

for a function f of «.
We can find ¥(r, ro) for r, < r < r, by defining
some hypothetical point 7 such that

(5.20)

(5.21)

lim ¥(r, 7)

o
cos (kr — 3lx) k¥ ' sin (kr — 1Ir)

]

—k 7k sin (xr — Lln) cos (kr — 3lr)

which is symplectic. In that case, ¥(r, ) itself be-
comes
—xrn, (kr) krg (rr)

—k 7 k)] g en)]

where n;, and j, are the spherical Neumann and
Bessel functions. We have

U(r, ro) = U(r, VF, ro) = ¥, A (ry, 7
_ l krjy &)
[ri(er)]’

, (5.22)

—xrn, (kr)

— k7 krn,(er))
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[rof: (k7o)] —kroj.(Rro)
E kronu(kro) /! —#rran (jro)

with the help of Eqs. (2.7a), (2.7b), (2.9), and

X , (5.23)

(2.24D).
For r > r., one has
Yor) = \ —krny(kr) Ry )
= (kn) i Een))
y l[ml(kml' —krgikr)| 5 o4
| [rcnl<kvrc)], -—krcnl(k'rc)

The expression for I';(r,) as defined in Eq. (5.3)
becomes

T,(r) = lim &,%,(0, N¥(r, r)¥(r,, ry).

30

(5.25)

Due to cancellation of some factors, one obtains

Iy = |[Fli®rdl —regiCer)
[rn,(kr))Y  —krm(kr)
% —xr.n(kr,) kr.ji(&r.)
—k7 ke (er )l [regier)Y
X I [rof{kro) ]’ —kroji(kro) ‘ (5.26)
E eran,(er)) —rran, (@ro)

which returns to an expression not involving r,
when « = £, as it should. One sees also the different
stages of matching wavefunctions and derivatives
at different points where the potential makes a
jump. We have now that

5 = T7'(ro)T7 ' (ro)

characterizes the phase-shift distribution due to a
random distribution at the point r,. The screening
effect of the centrifugal barrier is also demonstrated
in T(ry). If one varies r, to very small values, the
last factor of Eq. (5.26) will contain very large
numbers due to #; and very small numbers due to j,.
The resulting ellipsoid is therefore very flat and
very much stretched, which shows the screening
effect.

The second part of this section can be demon-
strated for n = 2 with the following example. If
A’ is sufficiently small, then in Eq. (5.16), cos A
can be replaced by cos A, and also the factor
I1 sin (5; — 5,) does not change. Therefore, only
the following factor is important:

[det (tan A, — tan A)["*V,

For a given A, we can now plot curves of constant
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Wt e=e¢=0  AC=0
P> p2 > ps > pa

——

T e T

Fig. 4. Contour diagram of 32 = (tan 8 -— tan &) vs
22 = (tan &, — tan 8),)* for different values of p.

p in a {tan &, tan &) diagram if e is taken equal
to ¢. These curves are the same as those of constant
|det (tan A, — tan A)}.

From Eq. (5.18), let tan A, be diagonal and let
tan A, be

tan 8, — 74a —1AC

tan 4, =

—1Ac tan 8y, — tAb

where Aa, Ab, and Ac are small numbers such that

Aa and Ab > 0, and (Aa)(Ab) — (A¢)®* = D > 0.
Define

z = tan 6, — tan &,

y = ta'n 62 — tan 532.
Then we have

|det (tan A, — tan A)[°
= 2%’ + (Ab)%’ + (Aa)® + 2Ad’zy + D°.

In the case that Ae = 0, this is a quadratic function
of z* and »°, and in fact it represents a hyperbola
with its center at the point (—(Ab)’, —(Aa)?).
Details are shown in Fig. 4. Figure 5 shows a plot
of z against y which follows from Fig. 4. If we
consider small # and y, then the term z°° does
not appear, and so near the origin we have ellipses.
When Ac # 0, these ellipses are rotated, which
is shown in Fig. 6.

Fre. 5. Contour diagram of y = tan 8 — tan & vs
z = tan §; — tan 8§y for different p-values; Ac = 0.
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Finally let us see how p depends on ¢ for the
case that 51 = 501, 62 = 502 and € — I- Ilet € be
parameterized as follows:

Cos € —Sin €
€ .
lsin & €8 &)
Then we obtain
tan A — tan A,
| —sin’ & cosésin ¢

(tan &, — tan 8yy)

)cos ésiné sin’ e
Aa  Ac
Ab

+1

Ac

We find for the determinant
_(tan 50; "‘tan 6()2)zsin2 E - 3) + é(tavn 6(}1 ""'tan 602)
X [sin® éAa — Ab) — 2 cos ésin € Ad)].

Then if tan &, is sufficiently different from tan 8.,
then for small Ag, Ab, and Ac, we can replace sin €
by & and cos & by 1. Calling tan &, — tan 8 = ¢
we get

~ & — D+ it[(aa — Ab)E — 2(Ad)d],
and we find the distribution function proportional to
(% + D) + £&{(Aa ~ Ab)e — 2Ac)7] L.

We see here how Ac¢ causes the function to be asym-
metric under the substitution ¢ — —é& From this
expression it becomes clear under which conditions
€ is accurately known.

6. DISCUSSION

In the foregoing sections it is made clear that,
in the case of uncoupled or coupled Schridinger
equations, certain predictions of phase shifts and
mixing parameters can be made even if the potential
is only partially known. The accuracy of the results

Fra. 6. Contour diagram of y = tan & — tan & vs
z = tan §; — tan &, for different p values; Ac = 0.
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is well defined and this is important when a com-
parison with empirical phase shifts and mixing
parameters is made. These phase shifts should be
where p is very large, or otherwise one has a res-
onance; in any case, the phase shifts should return
to the values indicated by large p when the energy
of the incident particles is changed in order to move
out of the resonance region. If the phase shifts are
persistently different from the expected ones, one
has an indication that the potential model is wrong.
Then, by moving r, farther outward, the calculated
accuracy of the results may become sufficiently low
to account for the differences with experiment. If
the experimental values are better known than the
theoretical values, one might try to make r, smaller,
thereby assuming some suitable form of the poten-
tial between the old and the new 7,. Or if one has
reasons that this cannot be done satisfactorily, one
could assume instead a phase distribution at 7,
which favors certain phases above others and leave
it that way.

Then the assumption has been made that all
channels are open. If there are closed channels it is
not possible to define a phase distribution which is
independent of r, when all potentials and centrifugal
barriers are equal to zero, and which does not con-
tain singularities. It is not clear whether our ap-
proach can be suitably modified to treat this case
also.

Finally, when there is absorption but no closed
channels, a modification of what has been described
in this paper will be possible and estimates about
the most likely amount of absorption under given
circumstances can be made. This allows one to ob-
tain elastic scattering cross sections for low-energy
» — P scattering if the potential is known for r > r,
and is real there, while an unknown potential with
absorptive part exists for r < 7.

ACKNOWLEDGMENTS

The author wishes to thank Professor E. M.
Henley and Professor J. J. de Swart for discussions
and a critical reading of the manuscript. Discussions
with Professor S. Okubo and Professor A. H. M.
Levelt were most helpful.

APPENDIX I. SOME THEOREMS ABOUT DIAGONAL-
IZABLE 2n%2n SYMPLETIC MATRICES

Let
a-|
|

A C
\B D
be an arbitrary 2n X 2n symplectic matrix. If @

C. DULLEMOND

can be diagonalized, its eigenvectors span a 2n-di-
mensional space. We assume that @ satisfies this
condition.

Theorem 1. The eigenvectors of @ go in pairs
such that the products of the two corresponding
eigenvalues are 1.

Proof: The eigenvalues of G are the solutions of
the characteristic equation

det (@ — \g) = 0. (1.1)

The eigenvectors of an m-times degenerate eigen-
value span an m-dimensional space. If one expands
Eq. (I.1) as a power series in A, one obtains

Azn _ )\Zn—l Tr(l) [a]
4 A2 Tr® @] — --- + Tpt?™ [@l =0, (1.2

where Tr® [@] is the sum of all p X p principal
minors (determinants of submatrices of @ of which
the row and column indices are the same). There
is a theorem which says that'®

Tr” [@] = det @) Tr*" ™ [@'] (1 <p<2m—1).

(1.3)

Let a bar indicate an operation which transforms @
into

o A

regardless of @ being symplectic. Then by inspection
one finds

Tr” [@] = Tr* [@],
and the symplectic property gives [with Eq. (2.9)]
Tr'® [@] = Tr® [@7']; (1.9
so from Eq. (1.3),
Tr” [@] = (det @) Tr®"® [@] = Tr*® [@], (L.5)

with the help of Eq. (2.10). Moreover, Tr®*” [@] =
det @ = 1.
Rewriting Eq. (1.2) in the form

X. _ )\n-—l Tr(l) [@] + )\n—z Tr(z) [(i]
e e + >\—nTr(2n) [a] = O,

one sees that this equation stays invariant when A
is replaced by A" and as a result we have that if A,
is an m-times degenerate root, then A;' is also an
m-times degenerate root, while X = =+1 is always

12 See, for example, G. Kowalewski, Einfihrung in die
Determinantentheorie (Walter de Gruyter & Co., 1954) p. 80.
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degenerate with even m. One can therefore always
form n pairs of eigenvectors with the property of
Theorem 1.

Note that the bar operation satisfies the property

a® = @ a, (1.6a)
el=a", (1.6b)

and
Q= a. (I.6¢)

Theorem 2. If a symplectic matrix can be diag-
onalized, one can always find a symplectic diag-
onalizing matrix.

Proof: Let 3 be a matrix which diagonalizes @:
37'@% = Qg

G, being diagonal, and the ordering of the eigen-
values can always be done such that @, is symplectic,
according to Theorem 1. We have

36F= Ed,

or

thus 3 and 5~ both diagonalize @ in the same way.
Then the space spanned by the m independent
columns of J belonging to the same (m-times de-
generate) eigenvalue M is the same as the space
spanned by the m independent columns of 57 be-
longing to that eigenvalue; in particular when m = 1,
the corresponding columns of 5 and 37! are pro-
portional. There must also be a set of m independent
columns of 3 belonging to the eigenvalue A7 (if 5)),
and similarly for 3%, If one now chooses m arbi-
trary independent vectors in the 3 space associated
with A, then the corresponding m independent vectors
in the 3" space associated with A™" are fixed. One
is now free to choose the vectors corresponding to A,
equal for Jasfor 57'. If A = =1, the spaces associate
with A and A™' coincide but are of even dimension.
One can still choose 3m independent vectors such
that they, together with the remaining 3m vectors
in that space (which are now fixed) span the whole
of m-dimensional space. As a result we have

3=173",
i.e., 3 is symplectic. There is still a considerable
amount of arbitrariness in the choice of 3.

Theorem 8. The matrix which diagonalizes a sym-
metric and symplectic matrix can be chosen orthog-
onal and symplectic.
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Proof: Any symmetric matrix @ can be diag-
onalized by an orthogonal matrix ®, and if @ is
symplectie, there exists a symplectic matrix J which
diagonalizes @:

3R = Q.
Let 3 be
5 = T, T, ,
T, T,
and let
a T T, A,
T2 T2

where A is a nonsingular diagonal n X n matrix.
We have, respectively,

7 e £ 2% ”—Tz A
T, T, T, T,
__)G—l _'Tz — |"Tz A
Tl Tl
and consequently,
af 7T = [T 5.
T] Tl

So if there are n independent eigenvectors corre-
T,
T,
to the eigenvalues A, then there are n independent
-T,

T,
belonging to the eigenvalues A™*. Now if one chooses
T,
T,
do in the case of symmetric matrices, one has

TITI + Tsz = I,

sponding to the columns of and belonging

eigenvectors corresponding to the columns of

the columns of orthonormal, as one is able to

80 the matrix
Tl - T2
Tg Tl

is symplectic and therefore orthogonal, from Eq.
(2.9).

Finally, some theorems about the group properties
of symplectic matrices are presented.

Theorem 4. The group of real orthogonal symplectic
2n X 2n matrices is isomorphic with the n X n
unitary group.
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Proof: Let
A —B
B A

@G =

be real orthogonal and symplectic. Introduce 3
defined by

5=\_1/_2__ I,
T

then

3_1%:% I —z‘I_‘A —B"I il

—I I |B Al 1

_Ja- o
” 0 A+iB|

We have

(A — iB)'(4 — iB) = (A + iB)(4 — iB)
= (AA + BB) — i(AB — BA) = I,

so A — 4B is unitary and sois A + ¢B. A one-to-one
mapping of the real orthogonal symplectic group
onto the unitary group has been established which
preserves the group properties. This proves the
theorem.!!

Theorem 5. The group of orthogonal symplectie
matrices of 2n dimensions is isomorphic with the
full linear group of n dimensions.

Proof: Let M be arbitrary nonsingular. Then one
can uniquely construct an orthogonal symplectic
matrix by defining A = (M + M™")/2 and B =
(M — FY)/2i which satisfty A4 + BB = I and
AB = BA. This leads to the wanted result.

APPENDIX II. TRANSFORMATION PROPERTIES OF
DISTRIBUTION FUNCTIONS

In this Appendix we use the symbols ¢, 7, k, 1, p, ¢
to indicate positive-integer indices, and we reserve
n for the number of coupled channels. Suppose
that, at the points r, and r, the generalized sym-
plectic vectors (A4,, Bo) and (A4, B) are given such
that (4, B) is the transform of (4,, B,) under a
symplectic transformation ¥(r, r,). We have 4,B, =
B,A, and AB = BA, but also

A,dB, — By dA, = AdB — BdA, (IL.1)

which follows from Eq. (2.10a) if the vector
(Ao + dA,, By, + dB,) and its transform (4 4 dA,
B + dB) are again symplectic. Here dA,, dB,, dA,
and dB are small variations. For simplicity we take
the length of (4,, B,) equal to I and the length of

C. DULLEMOND

(4, B) equal to M (det M # 0). We have
As = Ry sin no,
B, = R, cos 1,
A = R(sin )M,
B = R(cos )M,

where R, and R are real orthogonal, 7, and % real
diagonal such that

(I1.2)

%’"’>"701Z '2770"2_%'”':
> > 2 . 2> —3m

From Eq. (IL.1) we have, with the help of (II.2),
(sin ) Red[R, cos no] — (cos ) Rod[Ro sin no]
= T {(sin n)RA[R cos 1]
~ (cos nRA[R sin 4]} M. (11.3)

Call R dR, = dT,and RdR = dT;thendT, = —dT,,
and dT = —dT. Then from Eq. (I1.3) we obtain

(sin mo)(dT's) cos no — (cos 10)(dT,) sin no — dne
= M{(sin 9)dT) cos ¢

— (cos n)(dT) sin 4 — dq}M. (11.4)
We now introduce the matrices 7';; such that
(Tii)kl = 8,08 — 01051, (11-5)

Since dT and d7T, are antisymmetric, it is now
possible to define sets of in(n — 1) ‘mvariant in-
finitesimal intervals d&;; and d¢,; such that

dTy = 2 Ty dtl;,
< (I11.6)
dT = Y T, dg,,.
i<q
For n > 2, the intervals d§;; are not integrable,
i.e., whatever parameterization one adopts for the
matrices R, the condition Eq. (II.6) can only be
satisfied locally. As is shown in Appendix III, the
intervals d£,; are quite natural to use for a local
parameterization of R, and they are often pre-
ferable above any integrable set of infinitesimal
intervals.
Inserting Eq. (I1.6) into Eq. (I1.4) we find by
considering the diagonal elements,
d770k = 2 Z Mnquk sin (7717 - 774) dgzw

p<a

+ > MM, dn, L7

and the (k, I) elements (k < I) give
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8in (nox — 702) dézz
= Z sin (’71: - nu)(MpkMal + MakMul) dgpc

p<q

+ 2 MM, dy,. (IL8)
Introduce new variables for k < I:
d{:l = Sln (nok - 7’0!) dglc:ly (II.Q)

diy = sin (ny — m) A&y,
The Jacobians of the transformations to the new
sets of variables are

H sin (7707 -

»<q

H sin (ﬂp - 1),

»<a

respectively. Substituting Eq. (I1.9) into Eq. (I1.7)
and Eq. (I1.8), one obtains

dﬂok = ZMkMpk d’h + 2 ZMkMak dg‘pay

»p<q

7700) H
(I1.10)

and

den (I1.11)

(k<)

= Z M»kMpl dﬂp

+ 3 (MM, + MuM,) di,..

p<q

We need also the Jacobian of this transformation.
This can be found by considering the following.
If we define

dn? = dg.?ﬂl
dg‘IJq = dg—am

we obtain
dg‘l(:l = Z MpkMal dfw,
P.Q

= diy,
dipe = Aoy,

dWOD

which is just the transformation of a symmetric
tensor in an n-dimensional space. The Jacobian of
this transformation is det M, which is of nth degree
as function of the elements of M. If we consider
the elements of the symmetric tensor as components
of a vector in a in(n + 1)-dimensional space, the
transformation is again linear and its Jacobian is of
degree n(n + 1) as function of the elements of M.
Moreover, since the Jacobian must be a scalar
density, and since the only scalar densities available
are powers of det M, the Jacobian is a power of
det M. By inspection we find for the exponent
n(n + 1)/n = (n + 1). We can now relate volume
elements spanned on the infinitesimal intervals at
ro and at r. From the result we just obtained and
from Eqs. (I1.9) and (II1.10), we find
II sin (v, = 70

n<g

H Sin (77011 -

p<q

dfgz dE?a e dg:—l n d"101 e dﬂo» =

ﬂoq)
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X (det .Zl{[)"Jrl dtig -+ dEyndm -+ du,

but since it is equally likely to find an event in a
volume element at r, as in the transformed volume
element at r, we conclude that for the densities p°
at r, and p at r, we have the relation

H sin (771’ -~ 7o)

0 _p<a

p=p .
HSIH (7701: -

»<q

(I1.12)

det M)y,  (I1.13)

1’0«)

and we can make this general by taking the length
of the vector at r, not as I but M,, in which case
one obtains

o ESIH (771» - 77«) det M \**!
‘\det M1, . (I1.14)

= P TLsin (o, —
r<a

For n = 1, this reduces to a relation between density

“amplitudes” as discussed in Sec. 3.

770:1)

APPENDIX III. DERIVATION OF DISTRIBUTION FUNC-
TIONS FOR ENSEMBLES OF RANDOMLY CHOSEN
TRANSFORMATIONS OF A GIVEN GROUP

Let U be an arbitrary element and 6U an in-
finitesimal element of a given group. Then, if we
define dX = U — I, we have

U+dU = UsU,
dU = U(eU — I) = UdX, (I11.1)
dX = U'dU.

Suppose now that U depends on » independent
real parameters a; and dX on » independent real
parameters dx,;. We have then

Zégda,, dX = Z-—dx.

i=1 a i {=]

dU = (I11.2)
The dU/da; are then still functions of a;, but the
8X/dx; are constant. From the definition of dX,
it follows that it is independent of U, since 8U is
independent of U; therefore we call the set of in-
finitesimal intervals dx; an invariant set of intervals.
From Eq. (IT1.1) we obtain

U
Zaad“ ZU

i=1 i=1

dx,-. (II1.3)
If U is a matrix, then Eq. (III.3) just yields »
linear equations which can be chosen to be inde-
pendent, and a transformation dx; — da; is estab-
lished in a »-dimensional space.

An ensemble of randomly chosen transformations
U has the property that the number of transforma-
tions U 4+ dU for which the set dx; lies within a
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volume element dx, --- dx, is independent of U.
The distribution function of the ensemble is then
proportional to the Jacobian of the transformation
equation (IT1.3).

The following is a simple illustration. Consider
the group of rotations in three dimensions. Let R
be equal to R,(¢) R:(®#) R,(¥), where

cose sing O
Ri(p) = ||—sing cose O],
0 0 1
1 0 0
R, = |0 cosd sind.
0 —sind cosd
Then
0 de Xms
dX = "‘an 0 dXza .
'—de "dX23 0
We have
(dR1(¢)/d¢) = T1R1(¢) = R1(¢)T11
and
(dRz(ﬂ)/dﬂ) = Tsz(ﬁ) = Rz(”)sz
where
010 0 00
T,=1\|—1 0 O}, and T, =10 0 1j.
0 00 0 —1 ol

From Eq. (111.3) we have
R(QR,®R\(Y) dX = T:R\(9)R:(0)E.(¥) dp
+ Ri(@)T.R(NR,(Y) d¢ + Ri(p)R:)T.R,(¥) dyp.
From this we obtain
dX = (B,T\R,) dp + T, ds + T, dy,
and it follows that

dx1 2 cosd 0 1| |[de
dxial| = ||—sing 0 0||-||ds|.
dx23 0 1 0 | d\b

C. DULLEMOND

The Jacobian of this transformation is —sin @,
and as a result, we find the distribution function
for a random distribution,

p = posin .

One possible way to parametrize an n X n (non-
exceptional) orthogonal matrix R is by defining an
antisymmetric matrix A such that

A =(1-R/I+R).
If the 3n{n — 1)-independent parameters of A are
given, the matrix
R=(U-4)/1+ 4
is determined. Writing

4 = Z Tsei;,

i<q

[det (I + A4) = 0]

where T,; is defined by Eq. (I1.5), and using «;;
as parameters, the distribution function for a ran-
dom distribution of matrices B turns out to be

p = poldet (I + A)J'™" = poldet (I — A)]'™".

The application to the real orthogonal and sym-
plectic group is rather trivial. We demand that the
distribution function be invariant under transforma-
tion, and from the discussion of Appendix II it
follows immediately that

p = polI] sin (3 — )],
<7
where p, is constant. The group members ® are here
parametrized in the standard way,

R, Of R, O

0 R, 0 R,

where R, and R, are real orthogonal, 4 real diagonal;
Pr>m 2 20,2 %

Since p does not depend on B, and R,, we see that
when the matrices ® are randomly distributed, also
the R, and R, are randomly distributed. Due to
isomorphy with the unitary group, the distribution
function is the same for this group.

cos sin
® = K K

1

—sin 9 cos g
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The problem of reducing the Lagrangian for the interacting gravitational and Dirac fields to can-
onical form is discussed, using the vierbein formalism. The arbitrary gauge variables corresponding
to local Lorentz transformations of the vierbein are removed by imposing Schwinger’s “time-guage’’
condition, and a further condition that the spatial part of the vierbein be symmetric. It is shown that
in this guage the Lagrangian can be expressed in a canonical form involving essentially the same grav-
itational-field variables as in the absence of matter, and that the generators of spatial translations

and rotations have the expected form.

1. INTRODUCTION

N order to discuss the quantization of the gravi-
tational field it is necessary to eliminate the
arbitrary variables corresponding to the arbitrary
gauge variables of the electromagnetic field. The
reduction of the gravitational Lagrangian to a can-
onical form in which only four dynamical variables
appear was performed by Arnowitt, Deser, and
Misner,' starting with the Palitini form of the
Lagrangian in which the independent variables are
the contravariant metric tensor density ¢* and the
affinity I™,,. An alternative, but equivalent, formu-
lation may be obtained, following Weyl,® by using
as independent variables the vierbein e,” and the
local analog of the affinity, w®s,. Recently, Schwin-
ger® has shown that this form of the Lagrangian can
readily be reduced to a canonical form involving
essentially the same dynamical variables, and also
that the same reduction can be performed for the
gravitational field interacting with a scalar field.
The purpose of the present paper is to discuss the
analogous problem for the interacting gravitational
and spinor fields.

The formulation in terms of the metric tensor is,
at first sight, the more natural one for the gravita-
tional field in the absence of matter, and even per-
haps for the gravitational field interacting with other
tensor fields. However, when spinor fields are intro-
duced, the vierbein formalism becomes much the
simplest. Moreover, this form of the gravitational
equations is the one which arises most naturally

if the gravitational field is introduced into a Lorentz-
1

* The research reported in this document has been spon-
sored in part by the Air Force Office of Scientific Research,
OAR, through the European Office, Aerospace Research,
United States Air Force.

1R, Arnowitt, S. Deser, and C. W. Misner, Phys. Rev.
116, 1322 (1959) and 117, 1595 (1960).

* H. Weyl. Z. Physik 56, 330 (1929).

8 J. Schwinger, Phys. Rev. 130, 1253 (1963).

invariant theory to obtain a more general in-
variance.* We shall, therefore, employ this formalism
here. '

The existence of spin introduces additional com-
plications which do not appear in the scalar case.
It would not be hard to extend the discussion to
fields of higher spin, but since the essential features
already appear in the case of a Dirac field, we shall
restrict our attention to this case. Moreover, for
simplicity, we consider only a real (Majorana) field.
It is clear, however, that any number of internal
degrees of freedom for the Dirac field can be intro-
duced without in any way affecting the discussion.

2. THE LAGRANGIAN

Instead of describing the gravitational field di-
rectly through a metric tensor, one may introduce
at every point of space—time a vierbein, or set of
four vectors e,” related to the metric by®

uy

ueow = naﬂeaueﬂv — g ,

(M
where 7** is the flat-space metric®
naﬂ — 5«5 . 25&06)30'

Any tensor may be specified by its components either
with respect to the over-all coordinate system, or in
the local Lorentz frame defined by the e.*. For
instance, for a vector the two forms are related by
v* = e, ",
Thus, we have to distinguish two kinds of tensor
indexes, ‘“‘world tensor’” and “local tensor’”’ indexes.
The notation is as follows: Greek indices run from
0 to 3, and Latin indices from 1 to 3. In both cases,

¢ T. W. B. Kibble, J. Math. Phys. 2, 212 (1961).

5 The signature of the metric is opposite to that of reference
4. The quantities k;», A¥;,, ¢:;* of that paper are here denoted
by e.*, w%,, Q.s7. The corresponding quantities in reference
3 are e*,, —w,%, Ok
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we use letters from the early part of the alphabet
for local-tensor indices, and those from the middle
of the alphabet for world-tensor indices. We define
also the inverse &%, of e,*:

~lt v

v ~a B a
%, =46, €68 = 0°5.

It is related to the covariant metric tensor by

P
€ €ay = Guv-

Since at a later stage in this paper the distinction
between the two kinds of indices will be removed,
we only allow raising and lowering of indices with
the flat-space metric 7%, We therefore use a tilde
to avoid possible confusion; ¢,* and &7, are here to
be regarded as different (inverse) quantities, rather
than as contravariant and covariant components of
the same set of vectors..

The basic gravitational-field variables are the
sixteen variables, e,*, and the twenty-four variables
—w’®, which serve to define covariant
derivatives of local tensors just as the affinity T*,,
does for world tensors. It is often convenient to use
instead the variables

a
wﬂ“=

~a

= p K.
W gy = €40 gy

We define also
4 a
e = det &”,
and
4 ¥
Raﬁuv = waﬂu.r - waﬁvw - “’a'ruwTBv + wa'va Bu-

Here, and in the sequel, a comma denotes ordinary
differentiation. The superseript 4 indicates that these
are four-dimensional quantities.

In terms of these variables, the Lagrangian for the
gravitation field alone may be written as’

Lo = —1 %R = —1 %" R%,,.

In the quantized theory, we should of course con-
sider the problem of ordering of operators, and the
Lagrangian should be written in an appropriately
symmetrized form. However, we shall not indicate
this symmetrization explicitly, and we shall ignore
the noncommutativity of the variables, (except of
course that two Dirac fields are required to anti-
commute). The Lagrangian may also be written in
terms of &%, rather than w®g,, in the form

£ = (4eeaﬂ‘:’aﬁﬁ),u -

+

-~ 4 ~
00,70, + eQ.,%%°7,

Wl

Y8 ~v8 )
b

4 rma ~ -
e(@%, 0" — &% 56077,

(S

where

8 We use natural unitsin whiche = # = 1and « = 8G = 1.
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Qap" = (e'es” — e/ede", .
Note that
Qas” = (") (ees") .

The Lagrangian for the Majorana—Dirac field in-
cluding gravitational interaction may be taken to be

0¥ = 1 %e(ieS Yo Y., — myBY),

where the matrices o* = 8y and 8 = 7° satisfy
the conditions

an = o, = a.¥,
t

ﬁ = 6 = _B*v

(v, 7"} = —29%,

and the covariant derivative ¢ ., is defined by
Voo = Yo+ 10",

Yag = %[701) 73]'

An alternative form is

£5'7 = } ‘ele vy, — myByY — @ .8%,),

where the spin tensor 8%, is given by
8%y = _%ilpﬁ'yaﬂﬂb,

8
Yapy = %{'Ya:757} = €afydY 75y

v = Yovivovs.

It was pointed out by Weyl” that the Lagrangian
£6 + £ is not equivalent to the Lagrangian one
would most naturally write down in terms of the
metric tensor. The difference arises because the equa-
tions of motion for &%, involve the spin tensor
S%sy. It can be made equivalent by adding extra
terms representing a direct spin—spin interaction
similar to the Fermi interaction, namely®

Lo = —} ‘8%, 8.

For the purposes of this paper, it is immaterial
whether these are included or not. The reduction to
canonical form can be carried out equally well in
either case. One might perhaps expect that the
choice is not in fact arbitrary. It is interesting to
conjecture that one might be able to distinguish
between these two forms by using consistency con-
ditions of the kind discussed by Schwinger.® It may
turn out, in fact, that in the quantized theory
Lorentz covariance actually requires a particular
choice. For definiteness, and for reasons of simplicity
of the final expressions, we shall include the extra

7 H. Weyl, Phys. Rev. 77, 699 (1950).

8 See reference 4. Note however that the sign of £®) given

in Eq. (7.1) of that paper is incorrect.
® J. Schwinger, Phys. Rev. 130, 406, 800 (1963).
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terms. Thus, our final Lagrangian is

£ = £G+ cBD(O) _l_ £D(1).

It would be easy, however, to subtract £, from
the final expression if desired.

The Lagrangian £ has two quite distinct invari-
ances, under general coordinate transformations
(with ¢ transforming as a scalar) and under local
Lorentz transformations among the e,”. The reduc-
tion of £ to canonical form involves, as in the elec-
tromagnetic case, the choice of a particular “gauge’.
Like the radiation gauge, this gauge is appropriate
only to a particular choice of the time coordinate,
and manifest Lorentz invariance is necessarily lost,
though in principle one can check this invariance
at the end by examining the energy density com-
mutator.” In the following sections, the arbitrary
gauge variables will be eliminated successively in
three sets, corresponding to local pure Lorentz trans-
formations, to local spatial rotations, and to co-
ordinate transformation, respectively.

3. TIME GAUGE

The invariance under local Lorentz transforma-
tions implies the existence of six arbitrary gauge
functions, which may be eliminated by tying the
local axes e¢.” in some way to the overall coordi-
nate system. Three of these may be eliminated by
imposing the condition

which Schwinger® has called the “time gauge”. This
condition may also be expressed in terms of the in-
verse €°,; it then takes the form

& =0.
Tt also follows that &°; is the inverse of e,':
e =8, e =208,
and that
20y = 1.
Moreover, defining
e = det &,
we have
e = %ee,’.

The time-gauge condition presupposes that
gOO — emoeao - 600600 < 0’
or, equivalently, that the three-dimensional metric,

g:i = &4,

1435

is positive-definite. This means that the choice of
time coordinate must be such that the constant-
time surfaces are genuine spacelike surfaces. It is
clear that this is a necessary prerequisite for a can-
onical formalism of the usual kind.

The field equations for the variables @4, can be
written in the form

%(Qaﬁy - 9570‘ - Q‘yaﬂ) - %Saﬁ}u

We first examine the equations containing an even
number of indices zero. In the time gauge these
become

Wagy =

0 i
Qoao = €0 €, 8001,

%(Qabc - cha -

Woao =

Wape =

Qcab) - %Scabv

which also imply
a)bab = Qbab — (36)_1(36€ai)‘,'.

It follows from the time-gauge condition that Q.
contains no time derivatives. Therefore, @o,0 and @,
are purely constraint variables, and may be elimi-
nated from the Lagrangian.

Next we consider the components with an odd
number of indices zero. It is convenient to introduce
a notation for the symmetric and antisymmetric
parts of a tensor:

T(ab) =
T[abl =

%(Tab + Tbu)y
%(Tab - Tba)'

In the time gauge,
equations are

Qaso = 0; thus, the remaining

1
- Ql')[ub] - 7SOab)

Wapo =

- —_ 1
Wogp = Qo(ab) - 7SOab-

It follows that the antisymmetric components @o;qs,
are also constraint variables and may be eliminated
from the Lagrangian. When this is done, the varia-
bles @,z0 also drop out, and we are left with a Lag-
rangian containing only the symmetric components
@oap- Omitting explicit divergence terms,' it is

£ _ 46[—(90“&’0(@) _ Qoaaa’obb)

+ %(‘I’O(ab)‘:’O(ab) - ‘:’Oaa(:,Obb)
- % 3R + %Qabcsabc + %Qo,;bsoab
+ i’ Yo + e’ Y F elYay,) — Imysyl,

10 For the gravitational field, one must be more cautious
about doing this than is usually necessary, because some of
the field variables do not go rapidly to zero at spatial infinity.
The asymptotic behavior of the field variables is discussed
in detail by R. Arnowitt, 8. Deser, and C. W. Misner, Phys.
Rev. 121, 1556 (1961).
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where °R is the three-dimensional curvature scalar
formed out of the ¢.’, namely,

R = 2007 Per* '].s
- Qabbgacc + %Qabcﬂabc - %Qabcﬂcab-
The dynamical variables whose time derivatives
still appear in the Lagrangian are ¢, e,’, @wy. In
order to cast the Lagrangian into canonical form,

it is convenient to absorb appropriate factors of ‘e
into these variables. We define

v = (oY,
fa‘i — 3eea€,
Wap = 366’0(017)‘

and, correspondingly,
eS%, = —1¥BY"s, ¥,

oo = (o7l

o
8%y =

We note that
detf,' = (%)® = °y.

The quantity Q,,° may be expressed in terms of 1.
in the form

e’ = Ay’ = (faifbj - faifbi)fcw',i
— 3. — 8T
The remaining variables e, e,° are not true
dynamical variables. Their time derivatives are not
determined by the equations of motion; instead, the
corresponding equations impose constraints on the

dynamical variables. It is convenient to define the
variables

No = (39)—1500,

n = ,éoo eoi,
which then appear linearly in the Lagrangian and
play the role of Lagrange multipliers. The quantities
Q.°, which contain the only time derivatives of f,°
are expressible in terms of these variables in the
form

46(90ab - 6:’9000) = 3efbl'[fa“0 e fain"..i + (nifdi).i]'

Omitting some further divergence terms, the La-
grangian then reduces to

L= %iw,ﬂ - fbi.fai.()(mab - %8001!) - nuT“)
where
T° = 3°® — 1A,,°8", — 3. Wa™

+ Lm’%e¥s¥ + w.o® — v.%w)),

KIBBLE

—%iw.i + fb.'fai(wab - %Soab).i
= I i®w — $8°0)].

T,‘=

in which
‘R = 39 R = 236[(38)“f”Abub].|‘
— AGCA%.  FALCAT, — FAL°A.
4. SPATIALLY SYMMETRIC TIME GAUGE

The Lagrangian obtained in the previous section
still possesses an invariance under spatial rotations
of the local axes. To eliminate the corresponding
arbitrariness, we have to tie the local quantities f,’
in some way to the three-dimensional coordinate
system. We define

qi'i = faifai — 3g 3gii,

where %'’ is the inverse of the three-dimensional
metric tensor g;;. Then the problem is to reexpress
the Lagrangian in terms of the six variables ¢’
instead of the nine variables f,’. If 8%, were zero,
the terms involving time derivatives would auto-
matically be expressible in terms of ¢*’ , alone. How-
ever, the presence of spin introduces a complication
at this point which forces us to choose a specific
gauge condition such that the f,° become explicit
functions of the ¢‘’. That such a condition is neces-
sary may also be seen by considering the fact that
the dynamical variable ¥ is not determined until
we specify the gauge. The simplest choice is to im-
pose the symmetry condition

fol =0,

so that
= (g™,

in the sense of the matrix square root. (Recall that
q'" is a positive-definite matrix). This may be called
the spatially symmetric time gauge. Note that this
condition removes the distinction between local in-
dices and world indices, as indeed it must. We
continue to raise and lower all three-dimensional
tensor indices with the flat-space metric 4, ;.

In order to obtain a canonical form in this gauge,
we have to transform from the variables w,, to a

new set ,; conjugate to ¢**. This means that we have
to find a symmetric =,; such that

@ — %Soab)fbi = faiﬂ'-'i + o.;,
for then the time-derivative term may be written
_fai.o(wab - %Soab)fbi = _fai,ofa"ﬂ'.-; =

It is easy to solve this equation for o,;; we find

Caiy = 07

1,57
—32q ,oTij-
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Gap = K8 + k48% + K8,
where k*, is defined by
&S = L =1 - 81"
We then find that the equation for 7,; may be written
fai"ri:'fbi = W — Zap,
where Z,, is a symmetric quantity constructed out
of the spin tensor, namely

S = £ wfi’S e
o ke — .
Reexpressing the Lagrangian in terms of ¢'' and
7;:; we obtain
£ = LWV, — 3" omi; — 00",
where
T° = 3°® — }A,"8". — $if. W'V
+ 3m%UBY + 3¢ (wamis — wami)
— it Fs 2 + 3ZaZ”,
and
T, = —4%¥¥,; + }¢" i
+ (g*m) . — (@F7a) — 2

In these expressions, f. is of course to be regarded
as a function (namely the matrix square-root) of ¢*’.

The expression *® can also be expressed explicitly
in terms of ¢'' and its inverse §i; in the form"

1 o0f
— 38 .

® = ¢" i — 30uq" a0
+ 3¢ G Gmd"" 0" — 3¢5 Gimnd™ g™ s
For completeness, we note that if we had retained

the divergence terms throughout the additional terms
would be D*,, where

o ‘i
D = q”ﬂ"-f,

D' = (q"‘n,— - E‘.i - %30":')77/; - (33)_1!1”(337%0).;-

5. FINAL REDUCTION TO CANONICAL FORM

This Lagrangian is now in precisely the same form
as that for the gravitational field in the absence of
maiter, and the remaining reduction follows the same
procedure. We shall, therefore, merely summarize
the discussion, omitting the details.”® We make the
orthogonal decomposition of r.;,

1t Compare reference 3. .

12 See references 1 and 3. Here we follow essentially the
treatment of reference 3. Note that II;; there corresponds to
our —3ryj.
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T
Ty = wy + %("fs‘.i + 7";&:’) — &mn T 7y,

T T
s 4 = 07 Wi = Ov

and a similar decomposition of ¢”’. Then the true
dynamical variables are ¥, ¢'’, and =,;”. The con-
straint equations have the form

T"=3¢"u+9 =0,
T: = (ms,; — mj;,0) T8, =0,

and serve to determine g and =; implicitly in terms
of the remaining variables. The undetermined vari-
ables ¢* and = may be identified in an appropriate
way with the coordinates, by imposing “gauge”
conditions which remove the remaining arbitrariness
corresponding to general coordinate transforma-
tions. One possible choice is to write the coordinates
as explicit functions of ¢° and =:

-3¢,

In this gauge, the generators of rigid Lorentz trans-
formations are simply

=2 =

P = [dav,
J* = fdsx @' — 2'9%).

In particular, the generators of spatial translations
and rotations are explicit functions of the dynamical
variables alone:

P, = f dot (—30¥ ; + 3¢ w0,

Ji = fdsx (=2, 9% ;, + 8°%)

-+ (‘ﬂ'kthuQHT,ﬂ - 291 ).

As expected, these expressions are just the sums of
the corresponding expressions for the Dirac and
gravitational-field variables separately. It is easy
to verify that they do correctly generate transla-
tions and rotations of the dynamical variables. On
the other hand, P° and J° involve integrals of o°,
which is a complicated implicit function of the
dynamical variables.
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The procedure for generating useful cluster development in problems dealing with the Jastrow
wavefunction, as proposed by Wu and Feenberg, is discussed in detail. The existence of the expansion
is proved to all orders; also a simple rule is given for computing the expansion coefficients. The result
can be considered as a generalization of the Ursell-Mayer formulas.

I. INTRODUCTION

N the statistical and quantum mechanical treat-

ment of an N-body system, one often needs
the technique of the Ursell-Mayer-type cluster ex-
pansion’™® in evaluating physical quantities of
interest. In the general case the quantity considered
may be a function of NV distinct indices. For example,
in case of fermions, when a trial wavefunction in-
volving N single-particle orbitals is used to desecribe
the system, all quantities calculated for this system
depend on the N orbitals explicitly. This kind of
problem was first taken up by Jastrow* who intro-
duced a correlated wavefunction containing a factor
describing the correlation among particles in ad-
dition to a Slater determinant composed of plane-
wave orbitals. The mathematics of the cluster ex-
pansion in problems involving such wavefunction
has been discussed exhaustively by Hartogh and
Tolhoek® in a series of papers in which general ex-
pansion theorems are fully developed. On the other
hand, a much simpler formalism which is more
general, in the sense that the problem of Jastrow
wavefunction appears as a special case of its appli-
cation, was introduced by Iwamoto and Yamada.®
Considering the complicated notation and the large
quantity of combinatorial algebra involved in the
discussion of Hartogh and Tolhoek, an alternative
rigorous treatment along the more general lines
indicated by Iwamoto and Yamada seems desirable.
However it is rather difficult to demonstrate the
general character of the cluster expansion by the
method of Iwamoto and Yamada; also the existence

* The study was supported in part by the Air Force
Office of Scientific Research Grant AFOSR~62-412.
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of the expansion for arbitrary order is not easily
proved. An alternative procedure which retains the
essential simplicity and directness of the Iwamoto—
Yamada approach has been found by Wu and
Feenberg and used by them to compute numerical
results in a study of the fermion liquid.” It is there-
fore the purpose of this note to present a further
detailed discussion of the latter procedure. The
existence of the expansion is proved to all orders;
also a simple rule is given for computing the ex-
pansion coefficients. The result reduces to the Ursell-
Mayer formulas if one neglects the difference be-
tween all indices and, therefore, our formula is, in
a sense, a generalization of the Ursell-Mayer
formalism.

II. PROCEDURE OF CLUSTER DEVELOPMENT

As is well-known, the cluster-expansion procedure
is usually used in evaluating the logarithm of quan-
tity which behaves like exponential function of N.
In applications, the quantity of the order of e*¥
often has an integral form
K12-~-N = f le---N(Tl) Tay ="

yTN) dr d‘fz T dTN,

ey

in which the indices 1, 2, - -+ , N refer to, e.g., the
N different single-particle orbitals involved in the
trial wavefunction. The function W is symmetric
in all coordinates 7, 75, * - - , 7w, of the N particles
and the subscripts 1, 2, , N. A systematic way
to handle the problem, i.e., to evaluate In K,,...x
is as follows.>"”

First one defines the reduced K quantities by
specifying certain rules by which one generates the
K quantities of one index, two indices, etec. For
example if K,,...x is given by Eq. (1), one way to
define the reduced K’s is®

= [ Wi am, @

7F. Y. Wu and E. Feenberg, Phys. Rev. 128, 943 (1962).
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Kon = [ Wi, ) dridmy ete., @)

with [, m, n - .- referring to different indices in the
set 1,2, - -, N. The range of integration is the same
in all these integrals. Then the following relations
generate a set of X quantities, or a set of cluster
integrals:

K, =X,

Klm =X1Xm+le1
Klmn = XleXn + Xlen
+Xanl +Xnle+len) Y

until finally one reaches

@

K12~--N= Z {"'Xi"°X,'"'}
Zam.=N my factors
XA Xy oo X oo} oo, (5)

mq factors

in which the summation extends over all possible
products subject to conditions (i) no repeated in-
dices; (ii) permutation within a bracket not dis-
tinguishable. Each K, bence X, is symmetric with
respect to its indices.

As stated earlier, in application we are interested
only in the cases

In Ks...w ~ O). (6)

In fact if the rule that specifies the reduced K’s is
taken properly, one always has

X(m indices) T O(Nl—m)y (7)

and Eq. (6) follows as a result of Eq. (7), as we shall
see. Both Eqs. (6) and (7) are checked easily in the
special case of Mayer’s cluster expansion for a
clagsical imperfect gas for which all X’s having the
same number of indices are identical.

It is convenient to write

Kiow =X X, -« X,
Limeren = le___"/Xle - X,
I=1+men+ Emlm"

m<n l<m<n
+ 2

h<li<m<n

®
©)

(ThiZmn T TamZni F Tanlim + Thimn)

+ e
then

(10)

N
InKy,.w= 2 InX,+1Inl. (11)
1=1

The problem is now reduced to the evaluation of In 1.
At this stage, Iwamoto and Yamada® write down a
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set of differential equations and solve the problem
by construeting successive approximate solutions.
The extension of their method to arbitrary order is
difficult to carry out. In particular, the differential
equations must be written down with great care in
order to not overcount many terms.® In the following,
we shall first outline the alternative procedures sug-
gested by Wu and Freenberg’ and then extend the
discussion to all orders.

Let I,..... denote the function generated by
omitting all terms in Eq. (10) containing indices
in the set I, m, - -- , n. Then it is easy to see that in
Eq. (10) the coefficient of the factor z,, is exactly
I, Of Tomn 18 Ioms, ete. It follows that Eq. (10) can
be rewritten as

1= Ia+ qumlam + Examnlamn

m<n

+ Y ZemeLemeen o0 A+ T (12)
mn<eer <l
Now we write
Inl =@,
Inl,=G,=G—- H,, (13)

In Iam = Gam = (G - Hu - Hm)[]- + O(I/N)], ete.,

where @.,..., denotes the function generated by
omitting all terms in G containing indices in the set
I, m, ---, n. Retaining only the leading terms in the
exponentials, we transform Eq. (12) into

el =14+ Dz
m

+ 51_‘ mzn xqmne—(H.,.+Hn) 4 e (14)
Here the convention that any x with repeated in-
dices vanishes, i.e. 2...;...;... = 0, is introduced. We
emphasize that the substitutions Eq. (13) will be
justified by actually determining G.

Both sides of Eq. (14) and also each multiple sum
are now independent of N so that a formal expansion
of the exponentials is permissible. Taking the
logarithms of the left- and right-hand members of
Eq. (14), one obtains

Ho= W —3W' + W' —~ .-, (153)

1 1
W= ;xm[1—ﬂm+§ﬂi— ]+5 2 omn

x[l — (Ha+ H) + & (H, + HY — J
4+ e (15b)

As the equation stands, H, can be generated by an

8 We are indebted to Dr. Iwamoto for this remark.
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A=2xx (a)

mn tm mn

A
O =

I

(b} Fia. 1. Meaning of some
simple diagrams.

o HoXen
th Xt Xamn  (€)

obvious iteration procedure. Indeed, we get for the
first few terms

Hu = qum

+ Z (% Zamn — %xmaan - xqumn> + Y (16)

which, in turn, produces

G——men+ Z( xlmn—lxlmxmn)_'-"'r
tmn 3‘ 2
(17)
as observed from the relation
H, =G -G, (18)

This observation is best demonstrated if one starts
from the expression of G given by Eq. (17) and uses
Eq. (18) to compute H,; then

men + Z (3'xlmn - %xlmxmn) + et

imn
1
2, m;q zmn Z (3! Limn

Imnq
1
xlmxmn> + te ] = ﬁ Z (xqm + xma)

l\’)l’-‘ I'—_l

4 3[4 o e+ 2000

- % (xam mn T Trmelan + xmnznq):l + .- ’ (16,)
which is identically Eq. (16) on taking account of
the symmetry of the 2’s in the indices. Clearly the
ratio between the coefficients of Z,,.,, Zmq Ton aNd
Z,,.,. Zem Tmn I Eq. (16) must be 1 : 2 in order to
generate the term D imn Tim Tma in G. The necessity
of such correlation between the coefficients in the
expansion of H, persists to all orders. The explicit
statement of such correlation will be made after
we introduce the diagrammatical representation
below. Also one easily checks, with the help of Egs.
(7) and (9), that the first three terms of Eq. (17)
are of the order O(X). This linear dependence on N

F. Y WU

also persists to all terms of G. This fact follows from
the structure of Eq. (15b) which tells us that the
inclusion of each m index z ~ O(N'™™) brings in
exactly m — 1 free summations, and hence a factor
N'™.N""' ~ 0(Q).

A diagrammatical representation which will facili-
tate our discussion is now introduced. In the follow-
ing, the 2’s are called elements. An m-index element
is imagined as a rigid frame with m holes (or vertices)
attached to it: open holes represent the dummy
indices of a summation, and a black or solid hole
(indexed by ¢) is not summed over. No meaning is
attached to the order of holes in an element (sym-
metry of an element in all indices). A collection of
elements (i.e., a product of z’s) is called a diagram.
The meaning of some simple diagrams are given by
Fig. 1. A diagram is singly connected if all elements
of the diagram are connected without forming any
closed path; i.e., each hole common to two or more
elements is an articulation which, if omitted, would
dissociate the diagram into disconnected parts or
branches. The degeneracy S of a hole with respect
to a diagram is the number of holes equivalent to
it because of the symmetry of the elements in the
indices. In counting the degeneracy, we make no
distinction between the black and white holes. Thus
S = 2, 1 for the black holes of the diagrams of Figs.
1(a) and 1(b), respectively. Also § = m for the
holes of a single m-vertex element. It is also con-
venient to define the symmetry number® T of a
diagram as the number of ways one can permute a
definite set of distinet numbers attached to the open
holes of the diagram without changing the topology
of the diagram. For example, T = 1, 2, 2 for the
diagrams of Figs. 1(a), 1(b), 1(c), respectively. Also
T = m! for a single m-vertex element with no black
hole, and 7 = (m — 1)! for the same element when
one of the holes is black. It is clear that if in a dia-
gram a black hole is replaced by an open hole, the
symmetry number is changed from T to ST where
8§ is the degeneracy of the hole under consideration.

With this diagrammatical notation, it is readily
observed from the structure of Eq. (15) that each
term in the expression of H, can be represented by
a singly connected diagram with one black hole.
In fact one can always find terms in Eq. (16) cor-
responding to an arbitrary diagram. Therefore we
write

all distinet singly connected
H, = Z h (diagrams with one black hole] ’

(19)

with appropriate coefficient &, for each diagram.
The correlation among the coefficients %, to ensure
the existence of G is now clear: consider two diagrams
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composed of the same collection of elements which
differ only by the different positions taken by the
black holes [e.g., Figs. 1(a) and 1(b)], the criterion
is simply to require the ratio of their h coefficients
be [see Egs. (16) and (16")]

ha/hy = 8o/ Sy = T4/T., (20)

with S,, T.; S,, T, referring to, respectively, the
corresponding degeneracies of the black holes and
the symmetry numbers. In the last step of Eq. (20)
we have used the relation

ST = the symmetry number of the diagram if
ata™ the black hole is replaced by an open hole

=SbT5. (21)
Once Eq. (20) is established, one has immediately

22)

all distinct singly connected
G=g [diagrams with no black holes] ’

in which the coeflicient ¢ of an arbitrary diagram is
given by the following procedure. First one changes
(any) one of the holes in this diagram into a black
one and looks for the coefficient k., of this new dia-
gram in Eq. (19). If the degeneracy of the black
hole is denoted by S,, then

g = ho/S.. (23)

Therefore our problem is to show the validity of
Eq. (20) and to obtain an explicit expression for k..
To this end we state the following Lemmas to be
proved in the Appendix.

Lemma A. In the expansion of H,, let ky, b, - - -
denote the coefficients of diagrams in which the
black hole is not an articulation, and h, the coeffi-
cient of a diagram in which the black hole is an
articulation having n,, n,, -:- identical branches
with coefficients h,, h,, :-- , respectively. Then

he = (=1 — DT m2/mat, (29

where n = »_, m, is the total number of branches
at the articulation.

Lemma B. The coefficient %, of an arbitrary dia-
gram in Eq. (19) is given by
L 11

Ta (nll holes of
the diagram.

ho = (=D""'(m: — D!, (25)

in which 7', is the symmetry number of this dia-
gram and n; the number of elements connected by
the sth hole (n; = 1if the hole is not an articulation).

An immediate consequence of Lemma B is Eq.
(20). Therefore we have completed the proof that
the expansion of G exists. Finally upon combining
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G=8l+d Q-1 G+
1A QM -4 ed
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F1q. 2. Diagrammatical equation for G up to terms involving
six indices.
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Egs. (23), (25), and (21), the coefficient ¢ belonging
to an arbitrary diagram in Eq. (22) has the ex-
plicit form

1 )
9= <symmetry number of the diagram

II (=0 — 1.
[nll holes of
thediagram

(26)

This concludes the derivation of the expansion
formula for G = In I. We give in Fig. 2 the explicit
expression for G up to terms involving six indices.
As checked easily, this result reduces to the Ursell-
Mayer expansion if the cluster integrals involving
the same number of indices are all identical.

III. CONCLUSION

We have shown that the logarithm of the quantity
I of Eq. (10) can be expanded into a sum of terms
represented by singly connected diagrams in the
form of Eq. (22), with Eq. (26) furnishing an easy
way to determine the expansion coefficients. We
must note that terms down by a factor 1/N are
neglected in the result. Also, the expansion is useful
only when it converges fast enough so that the
leading terms produce a good approximation. This
seems, indeed, to be the cases in application.®”

ACKNOWLEDGMENTS

The author wishes to express his thanks to Pro-
fessor Eugene Feenberg for suggesting this problem,
as well as for a critical reading of the manuscript.



1442 F. Y.

Fia. 3. Schematical dia-
gram of an m-hole element
with only one hole attaching
branches.

He is also indebted to Dr. Tohru Morita for illumi-
nating comments and for calling attention to the
resemblance of this expansion to the fugacity ex-
pansion formula for the classical fluids under the
presence of external field.® The expansion formulas
obtained here, as pointed out by Dr. Morita, can
also be derived on the basis of the technique de-
veloped in references 9 and 10. Helpful discussions
with C. T. Chen-Tsai is also appreciated.

APPENDIX

Proof of Lemma A: The diagram with the black
hole having n branches clearly comes from the term
(=W)"/n of Eq. (15a). The multiplicity for oc-
curence of such a diagram in the expansion of W™
is n1/ ]I n,), with coefficient ] 4;'. Upon com-
bining these with the factor (—)"/n, Eq. (24) is
derived. Q.E.D.

Proof of Lemma B: Lemma B will be proved by
induction. First, it is obvious from Eq. (15) that
Lemms B holds for a single m-vertex element for
which

he =1/(m — D! =1/T,. (27)

Therefore it remains only to show that Lemma B
holds for any diagram if it applies to arbitrary dia-
gram composed of fewer elements.

First let us consider diagrams having articulation
black holes. Let the branches of the diagram be
specified by the set {n;, h;} as stated in Lemma A;
then the symmetry number of the diagram is given
by

T, = II T, (28)
14
where T, denote the symmetry numbers of the
branches. Now, by assumption, Lemma B applies
to diagrams composed of fewer elements so that the
coefficient h; of each branch is given by
¢ T, Morita and K. Hiroike, Progr. Theoret. Phys. (Kyoto)

25, 537 (1961).
"1, Morita, Progr. Theoret. Phys. (Kyoto) 21, 501

(1959).

wU

hy = —1" H
Tl [allholesof

the branch

(=" — DL (29)
The substitution of Eqgs. (29) and (28) into Eq. (24)
now yields

1
Ta [all Ees of)

the diagram

h, = (=" '(n;, — DL

QE.D.

Next consider the diagram in which the black
hole is not an articulation. In the most general case,
the black hole sits on an m-hole element, with p
of the m holes attaching branches. In order to illus-
trate the essential points of the proof, we shall
consider the case of p = 1 only. The proof for the
general case can be constructed in a completely
similar fashion."

Consider the diagram shown schematically in
Fig. 3 in which the black hole sits on an m-hole
element with one open hole attaching n branches
denoted again by the set {n;, h;, T;}. The symmetry
number of the diagram is now given by

= (m — 2! II 7o, (30)
1

with the symmetry numbers T, of the individual

branches related to h; through Eq. (29). The coeffi-

cient h, of this diagram comes from the term W

of Eq. (15a). More specifically it comes from the

following terms:

(mil)'nZ Faize: '"‘.Zg;;(

" L, e ?%( i

Comparison of Eq. (31) with Fig. 3 indicates that
we need to collect terms represented by the set of
branches {n;, h;,, T;} in the expansion of H*. The
first term H, contains only one such term. The
second term H’ contains more than one contri-
bution. In fact, for each distinct way that the n
branches are divided into two groups, there corre-
sponds a contribution with one factor of H, con-
tributing to one group of branches, and another H,
to the other group. The multiplicity for occurence
of such terms in the expansion of H? is 1 if the two
groups are identical, and 2 otherwise. In general
for the term Hj we consider all the distinct ways
that the » branches are divided into k groups of
which B8, 8., --- , B, are identical. Let the A coeffi-
cients of these groups be denoted by &y, Ay, « - , h,,
respectively. Then for each distinct way that the

(31

1F. Y. Wu, Dissertation, Washington University (1963).
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n branches are divided, there corresponds, in the
expansion of H:, a contribution to the coefficient
h, with multiplicity %!/8,18;! --- 8.1 It follows
then from Eq. (31)

_ 1 n (_1>k
ha = (m — 2)! Z k!
k! _ _
e hﬁ: . h‘?r, 39
X (ﬂ:ﬂ;-ﬂr) BulB! - B! (32)
in which (8.8, - - - 8,) denotes the summation taken

under the restriction 8, + 8. + --- + 8, = k.
Now the coefficients Ay, hs, -+ h, can be obtained
by Lemma A. However it proves useful at this
point to note that the factor (n — 1)!/]]n.! ap-
pearing in Eq. (24) is just the number of distinet
ways to perform cyeclic permutations on the group
of n branches (among which n,, n,, - - - are identical).
Using this interpretation of Lemma A for the ex-
pressions of hy, hy, <+ -, h., we get

o _ product of the number of
RERE .. % = (—1)""* |distinet cyclic paramutations
of the branches in each group

II ». (33)

Substituting Eq. (33) into Eq. (32), we have
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1

he = G — 201

(—m I wy, (34)
!
where
product of the num-
n 1 ber of distinet eyclic
Z — -~ |permutations of the
s 55y B! B2l -+ B,! |branches in each

group

the number of distinet ways one can
permute the n branches under the
particular grouping by performing
= Z Z cyclic permutations within each
k=1 (B1:-**Be) | group while the groups are un-
numbered

M:

n

the number of distinct ways one

can permute the n branches by first
= |dividing into unnumbered groups and

then performing cyclic permutations

within each group

It is well-known that each permutation of a collec-
tion of objects can be analyzed into groups of cyclic
permutations in an unique way. Therefore also

the number of distinct permutations of']
[the n branches (35)

M=

=nY ] nt.

The substitution of Eqs. (29) and (35) into Eq. (34)
and the introduction of Eq. (30) now yields Eq. (25).
Q.E.D.
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1, INTRODUCTION

HE notion of strictly localized states has

recently been introduced by Xnight.! Let
¢(z) be a complete, local, scalar Hermitian field.
Let @ denote the vacuum state. Then a state ¥
is said to be strictly localized in a region G of
Minkowski space if for any n,

1J. M. Knight, J. Math. Phys. 2, 459 (1961).

¥, (@) -+ o@)T) = (Q, o(x;) -+ p(2,) D),

when all the z, --- z, are outside G.

Knight has shown, for the case of the free field,
that such states cannot contain a finite number of
particles. He has also shown that states of the form

e,

where A is a smoothed polynomial in the field in a



CLUSTER DEVELOPMENT

n branches are divided, there corresponds, in the
expansion of H:, a contribution to the coefficient
h, with multiplicity %!/8,18;! --- 8.1 It follows
then from Eq. (31)

_ 1 n (_1>k
ha = (m — 2)! Z k!
k! _ _
e hﬁ: . h‘?r, 39
X (ﬂ:ﬂ;-ﬂr) BulB! - B! (32)
in which (8.8, - - - 8,) denotes the summation taken

under the restriction 8, + 8. + --- + 8, = k.
Now the coefficients Ay, hs, -+ h, can be obtained
by Lemma A. However it proves useful at this
point to note that the factor (n — 1)!/]]n.! ap-
pearing in Eq. (24) is just the number of distinet
ways to perform cyeclic permutations on the group
of n branches (among which n,, n,, - - - are identical).
Using this interpretation of Lemma A for the ex-
pressions of hy, hy, <+ -, h., we get

o _ product of the number of
RERE .. % = (—1)""* |distinet cyclic paramutations
of the branches in each group

II ». (33)

Substituting Eq. (33) into Eq. (32), we have

IN AN N-BODY PROBLEM 1443

1

he = G — 201

(—m I wy, (34)
!
where
product of the num-
n 1 ber of distinet eyclic
Z — -~ |permutations of the
s 55y B! B2l -+ B,! |branches in each

group

the number of distinet ways one can
permute the n branches under the
particular grouping by performing
= Z Z cyclic permutations within each
k=1 (B1:-**Be) | group while the groups are un-
numbered

M:

n

the number of distinct ways one

can permute the n branches by first
= |dividing into unnumbered groups and

then performing cyclic permutations

within each group

It is well-known that each permutation of a collec-
tion of objects can be analyzed into groups of cyclic
permutations in an unique way. Therefore also

the number of distinct permutations of']
[the n branches (35)

M=

=nY ] nt.

The substitution of Eqs. (29) and (35) into Eq. (34)
and the introduction of Eq. (30) now yields Eq. (25).
Q.E.D.

JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 4, NUMBER 11 NOVEMBER 1963

Strict Localization

A. L. LicaT
U. 8. Naval Ordnance Laboratory, Silver Spring, Maryland and Depariment of Physics and Astronomy, University of Maryland,

College Park, Maryland
(Received 24 June 1963)

A complete characterization for a general quantum field theory is given of the strictly localized
states introduced by J. Knight. It is shown that each such state can be generated from the vacuum
by a partially isometric operator. Necessary and sufficient conditions are given for the superposition
of such states to be also strietly localized. Finally, it is shown that there is a connection between the
von Neumann type of the ring generated by the field operator in a finite region and the possibility of

constructing strictly localized states.

1, INTRODUCTION

HE notion of strictly localized states has

recently been introduced by Xnight.! Let
¢(z) be a complete, local, scalar Hermitian field.
Let @ denote the vacuum state. Then a state ¥
is said to be strictly localized in a region G of
Minkowski space if for any n,
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when all the z, --- z, are outside G.

Knight has shown, for the case of the free field,
that such states cannot contain a finite number of
particles. He has also shown that states of the form
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where A is a smoothed polynomial in the field in a



1444

region G, are strictly localized in the union of the
forward and backward light cones subtended by G.
In the following we will investigate strict locali-
zation in a general quantum field theory using the
language of operator rings.”'* In Sec. II it will be
shown that each strictly localized state can be
generated from the vacuum by a certain partially
isometric operator. In Sec. III, necessary and suffi-
cient conditions are given for the superposition of
such states to be also strictly localized. In Sec. IV,
we show that there is a connection between the von
Neumann type of the operator rings and the pos-
sibility of constructing strictly localized states.

II. STRICTLY LOCALIZED STATES

For any open region G in Minkowski space, we
will denote by R(G) the weakly closed symmetric
ring of bounded operators generated by the pro-
jectors associated with the field ¢(z) in G.* The
symbol @ will denote the spacelike complement of G.
The commutant of the ring R(G) will be denoted
by R'(G). The Hilbert space of physical states will
be denoted by H.

In this notation, we have found it convenient to
define strictly localized states as follows:

Definition 1. The state ¥ is said to be strictly
localized outside the open region @, if for any
4 € R(G),

, AV) = (9, AQ). 1)

A class of strictly localized states is given in the
following theorem.

Theorem I. If W is any partially isometric opera-
tor in R’(G) such that

w'w =1, @)
then the state
v =W (3)

is strictly localized outside G.
Proof: Let A € R(G); consider
¥, AV) = (Q, W AWQ),
since W € R'(®),
r, AW = (9, AW'WQ),
by (2),
I, AV) = (Q, AQ).
If W Wt = 1, then W is unitary, and we have the
class of states considered by Knight. However, in
* R. Haag and B. Schroer, J. Math. Phys. 3, 248 (1962).
3 M. A. Naimark, Normed Rings, translated from the
1st Russian edition by L. F. Boron (P. Noordhoff, Ltd.,

Groningen, The Netherlands, 1959).
4+ H. Reeh and S. Schlieder (to be published).
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general, W Wt = P 1, where P is some projector
in R'(@), as by (2),

P = WWWwW' = P.

The operators W of Theorem I have a rather
interesting property. If ®;, ®, are any two states
in H, and if A is any operator in E(®), then

<Wq’1, AW<I>2> = <<I>1, Aq)z)- (4)

The proof is the same as in Theorem I. This leads
us to make the following definition.

Definition 2. A bounded operator W is said to be
strictly localized outside the region G, if Eq. (4)
holds for all &,, ® € H, and all A € R(G).

Theorem II. The bounded operator W is strictly
localized outside the region G, if and only if

w'w =1,
and
W € R'(G).

Proof: The sufficiency is immediate. We will
prove the necessity. Equation (4), since it holds for
any ®,, ®,, € H, implies that

W'AW = 4, (3)
for all A € R(G@). In particular, for 4 = 1,
wWW = 1. (6)

However, for any 4 € R((),
W'AW = W'[A, W]+ WWA =W'[A, W]+ 4,
by (6). Thus

W'A, W] = 0. (7)
Similarly, we find that
W' AW = 0. (8)

Now, since A € R(G), then AT and 4’4 € R(G),
and by (5),

W'A'AW = A4 = W', AN[A, W)
+ W, ATWA + AW W, Al + ATW'WA.
Using Egs. (6), (7), and (8), we get
(4, W)'(4, W] = 0.
Let ® & H. This implies that
{4, Wi®|* = 0,
which implies, since & is arbitrary,
[4, W] = 0.

Thus, W € R'(G).
Theorems I and II together imply that if W is an

and [A, W] = 0,
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operator strictly localized outside a region G, then
the state WQ is strictly localized outside G. The
next theorem will show that all strictly localized
states are of this form.

Theorem III. To every state ¥, strictly localized
outside an open region @, there corresponds an
operator W, strictly localized outside G, such that

Wa =¥

Proof: To prove this theorem we will need the
following Lemma.

Lemma. If G is an open region in Minkowski
space, then

closure (R()Q) = H.

Proof: Let A(G) denote the operator algebra
generated by finite polynomials in the field ¢(x),
smoothed by testing functions with support in G.
Reeh and Schlieder® have shown that

closure (A(G)Q) = H.
They have also shown* that
A"(G) = B(@,

and that this with (9) implies the above Lemma.

Now let ® be any element of H. By the Lemma,
there exists a sequence {4,, A, € R(G),n=1,2---},
such that

9)

A,Q— &, (10)
ie,
[4,2 — & — 0.
Consider the expression
¥(®) = lim A,¥. (11)

n—w

This limit exists, for
|4 ¥ — A¥| = (4, — 4.)¥],
Since ¥ is localized outside G,
¥(P) = |(4. — 4.)9|
— 0,

by Eq. (9). The space H is complete. Thus ¥(®)
exists and is unique. The limit (11) is also inde-
pendent of the particular sequence |{A4.}. For if
{A!} is another such sequence,

4.9 — A\¥] = |(4, — AD¥| = |(4. — ADQ|
< (4.2 — ®)| + [(410 — D)]
- 0.

* H. Reeh and S. Schlieder, Nuovo Cimento 22, 1051
(1961).
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Thus ¥(®) depends only on the states ¥ and &.
We claim that it is linear in ®. For if {4.} and {A}}
are two sequences in R(G) such that

A0 — &, 1=1,2,
then clearly, for any complex numbers a, 8,

(ad) + BAHQ — a®' + 8D,
and

lim (4. + BANY)

n—ow

V(ad' + %)

= alim ANV + 8 lim A%

n—ro

a¥(®") + B¥ (D).

n—o

The correspondence
b — ¥(P)

thus defines a unique linear operator W, depending
only on ¥, such that

V(D) = Wa.
This operator is bounded, for
[We|

lim [A,%|

noo

lim |4,

no®

I

|®].
We claim that

WQ =V.
For, the sequence {A, = 1} is such that

A4,Q0— 9,
but now
W = lim A% = ¥,

The operator W is strictly localized outside G.
For let &, & € H, A € R(G). Then there exist
sequences {A;} C R(G), 1 = 1, 2, such that

40—, i=1,2
Consider

(W&', AW

lim (A.¥, AANY)

n, Mo

lim (¥, A)' 4 A%,

n,moo

Il

since ¥ is strictly localized outside @,

(Wa', AW®®) = lim (@, A}'4420)

= (®', AD").
Corollary 1. Let ¥ be strictly localized outside G.
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The operator W constructed above is unique in the
sense that it is the only operator in R'(G) such that
WQ = ¥. It is not, however, the only operator
which can create ¥ from the vacuum.

Proof: Suppose V & R'(G) and V2 = ¥. Then
for any 4 € R((),

AW — V)2 =0= (W — V)AqQ.

Since states of the form AQ are dense in H, this
implies that

W=1Y.

Now the operator WP, where P, is the pro-
jector onto the vacuum, certainly generates ¥ from
the vacuum. We cannot, however, have

WP9=W,

for then, premultiplying both sides of this equation
by W', we would obtain

P o = 15
& contradiction.

Given a state ¥ strictly localized outside G, the
problem now arises as to whether there exists some
region F such that the associated operator W is
in R(F). The solution rests on the validity of the
duality theorem, which has been partially proved
by Haag and Schroer.” This theorem states that
for any open region G,

R'(G) = R(@),
from which it immediately follows that F = .

HI. SUPERPOSITION OF STRICTLY LOCALIZED
STATES

With the aid of the associated localized operators,
it is now possible to give the conditions under which
it is possible to superimpose localized states.

Theorem IV. Let ¥,, ¥, be two states strictly
localized outside an open region G. Let W,, W, be
the corresponding strictly localized operators. Then
the states

Yo, B) = Nla¥, + 8¥,],
where « and 8 are any complex numbers and
N = |a¥, + ¥,
will be strictly localized outside G if and only if
WaW, = (@, WoW.Q) =7, say.  (13)

Proof: We will prove the sufficiency first. Suppose
(13) holds. Then the operator

W = N((XW1 + BIV?)

(12)

A. L. LICHT

is in R'(@), and is such that
W'W = (lal* + [8]" + a*r + a*pr®)™
X (lef* WiW, + 8] WaW,
+ aB* W, W, + o*8W W)
= 1.
By Theorem I, the state
Ve, B) = WQ

is strictly localized outside G.

We will prove now the necessity. Suppose that
¥(w, B) is strictly localized outside G. Then for
any 4 € R(@),

(Tla, B), A¥(a, B)) = (2, 40).

Using the expression (12), and the strict locality
of the states ¥, and ¥,, we find that

o*B(Q, WiAW,Q) + af*(Q, W,AW, Q)
= (a*fr* + B*ar){Q, AQ).
Since this must hold for all «, B, we conclude that
(Q, WIAW,Q) = 1{(Q, AQ).

Now suppose A = A!A,, for arbitrary 4, € R(®),
7= 1,2 Since W, € RB'((,

(4.9, WiW, 4,2) = 14,0, 4,9).

But by the Reeh-Schlieder Lemma, states of the
form AQ, A & R(() are dense in H. This implies,
by continuity,

<¢1y W:W1¢2> = T{‘I’i, @2>
for all ®,, &, € H. Thus,
WW, = r.

Corollary. 1f the states ¥{a, 8) are strictly localized
outside @, then we may express one of the operators
W., W, say, in the form

W, =W, + (1 — [rPHU. 14

where the operator U is strictly localized outside G,
and takes H into a subspace orthogonal to the sub-
space W, H.

Proof: The number 7 is in magnitude less than 1, as

Ir] = Ko, Wow,0)] < | |W,] [W,| = 1.

Thus the root in (14) is real. The operator U is
clearly in R'(G). By Eq. (13),

UfW1 = O.
Since WiW, = 1, we get

(15)
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UtU = 1, ie,

Thus U is strictly localized outside G. Consider the
projectors

U is partially isometric.

P, =W,Ww, P=UU"
From (15) it follows that
PP, = 0.

Thus W, and U take H into mutually orthogonal
subspaces.

IV. VON NEUMANN TYPES

There has been some interest expressed recently®
in determining the von Neumann factor types of the
rings R(@). The following theorem has a physical
interpretation which makes factor type III seem
most reasonable.

Theorem V. Suppose that

(a) The Hilbert space H is separable.
(b) For any open region G, the ring R(Q@) is a
factor, i.e., R(G) N R(G) = (al).

Then to each projector P & R(G) there corre-
sponds a partially isometric operator W & R(G),
such that WIW = 1, P = WW, if and only if the
factor R(G) is of von Neumann type ITI.

Proof: Assumption (a) has generally been assumed
to be true.” A partial proof of assumption (b) based
on primitive causality has been given by Haag
and Schroer.?

Let us suppose that the factor B(G) is of type III.
Then the relative dimension function D, defined on
projectors in R(G), takes on only the values 0, .°
It is O only for the null projector. This implies that
all nonnull projectors in R(G) project onto infinite
subspaces. The separability of H then implies that
all such projectors are equivalent,” in particular,
equivalent to 1, i.e., that P € R(GF), P = 0 implies
the existence of a W & R(@) such that

P=ww', WwWw=1.

Thus we have proven the sufficiency of the above
condition.

Consider now the necessity. If to every nonnull
projector P & R((G) there corresponds an operator
W &€ R(G) such that

w'w =1, WwWW' =P,

then each such projector is equivalent to the unit
operator. This implies that for P = 0,°

6 Reference 3, p. 469, Theorem 2.
7 Reference 3, p. 457, Proposition VI.
8 Reference 3, p. 465, Eq. (3**),
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DP) = D(1).

There are only two von Neumann types compatible
with this condition—type I,, or type I1I. The type I,
must however be ruled out, as it would imply that
R(G) consisted of only multiples of the identity.’

This theorem may be interpreted as follows: To
each proposition ¢ concerning a measurement made
by an apparatus located in the region @, there is
associated a projector P € R(G),'° such that for
any state ® € H, P® = & if ¢ is true in ¥, but
P& = 0if it is false. A partially isometric operator
W € R(G) such that W'W = 1, WW' = P, we
interpret as representing an apparatus in G, which
alters any state such that the proposition corre-
sponding to P is true, i.e.,

PWed = WWWa = Wa.

Moreover, by Theorem II, the state W® will not
differ from & as far as measurements made in G’ are
concerned.

With this interpretation, Theorem V is equi-
valent to the statement that the ring R(G) will be
of von Neumann type IIT if and only if for every
proposition ¢ in G, there is an apparatus in G which
can alter any state such that ¢ is true, without af-
fecting any measurement made in the region G'.

Note added in proof. The author is indebted to
Professor H. Araki for the following comments.

(1) The notion of strict localization is a special
case of the notion of “equivalence”. Two states are
sald to be “equivalent in a region G, if their ex-
pectation values are the same for all operators in
R(@). A state equivalent to the vacuum in @ is
then strictly localized outside G.

{(2) Theorem III can be proven more directly by
defining an operator V by

VAQ = AV

for all A & R(@). The closure of this operator can be
shown to exist, and to have the required properties.

(3) Theorem V can also be interpreted as saying
that R(G) is of type III if and only if for any pro-
jector P € R(@), and any state ¥ & H, there is
an eigenstate of P that is equivalent to ¥ in G'.
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